N2-Fixing Cyanobacteria: Why They Do Not Become Dominant in Dutch, Hypertrophic Lakes

  • Wanda Zevenboom
  • Luuc R. Mur
Part of the Developments in Hydrobiology book series (DIHY, volume 2)


Species shifts and succession phenomena in lakes of increasing trophic state were considered in detail, using the basic information on the growth kinetics of the species involved. Successively we dealt with the succession from green algae to cyanobacteria in eutrophic lakes and the competitive interactions between N2-fixing and non-N2-fixing cyanobacteria in eutrophic-hypertrophic lakes. The competing species could be placed along an irradiance gradient; their position being defined by their light-energy requirements. Further, when a N2-fixing organism was involved, the competitive interaction could be defined under different sets of irradiance values and nitrate concentrations. The growth kinetic data, obtained under laboratory conditions, provided the basic information to explain why hypertrophic lakes are less favourable to N2-fixers, even when a N-limitation prevails. The trophic state of the lake is of major importance and is decisive with regard to which species will dominate.


Green Alga Nitrate Concentration Trophic State Competitive Interaction Eutrophic Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlgren, G. 1970. Limnological studies of Lake Norrviken, a eutrophicated Swedish Lake. II. Phytoplankton and its production. Schweiz. Z. Hydrol. 32: 354–396.CrossRefGoogle Scholar
  2. Barica, J. 1978. Collapse of Aphanizomenon fios-aquae blooms resulting in massive fish kills in eutrophic lakes: effect of weather. Verh. int. Ver. Limnol. 20: 208–213.Google Scholar
  3. Berger, C. 1975. Occurrence of Oscillatoria agardhii Gomont in some shallow eutrophic lakes. Verh. int. Ver. Limnol. 19: 2689–2697.Google Scholar
  4. Bradley, S. & Carr, N. G. 1977. Heterocyst development in Anabaena cylindrica: The necessity for light as an initial trigger and sequential stages of commitment. J. Gen. Microbiol. 101: 291–297.Google Scholar
  5. Gibson, C. E. 1978. Carbohydrate content as an ecological tool in the study of planktonic blue-green algae. Verh. int. Ver. Limnol. 20: 630–635.Google Scholar
  6. Gibson, C. E., Wood, R. B., Dickson, E. L. & Jewson, D. H. 1971. The succession of phytoplankton in L. Neagh 1968–70. Mitt. int. Ver. Limnol. 19: 146–160.Google Scholar
  7. Gons, H. J. & Mur, L. R. 1975. An energy balance for algal populations in light-limiting conditions. Verh. int. Ver. Limnol. 19: 2719–2723.Google Scholar
  8. Gons, H. J. & Mur, L. R. in press. Growth rate and light uptake rate in light-limited continuous cultures of Scenedes- mus protuberans Fritsch. Arch. Microbiol.Google Scholar
  9. Holtan, H. 1978. Eutrophication of Lake Mjøsa in relation to the pollutional load. Verh. int. Ver. Limnol. 20: 734–742.Google Scholar
  10. Horne, A. J., Sandusky, J. C. & Carmiggelt, C. J. W. 1979. Nitrogen fixation in Clear Lake, California. 3. Repetitive synoptic sampling of the spring Aphanizomenon blooms. Limnol. Oceanogr. 24: 316–328.CrossRefGoogle Scholar
  11. Keating, K. I. 1978. Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199: 971–973.PubMedCrossRefGoogle Scholar
  12. Loogman, J. G. & Van Liere, L. 1978. An improved method for measuring irradiance in algal cultures. Verh. int. Ver. Limnol. 20: 2322–2328.Google Scholar
  13. Mur, L. R., Gons, H. J. & Van Liere, L. 1978. Competition of the green alga Scenedesmus and the blue-green alga Oscillatoria. Mitt. int. Ver. Limnol. 21: 473–479.Google Scholar
  14. Rhee, G.-Y. 1979. Continuous culture in phytoplankton ecology. In: Droop, M. R. and Yannasch, H. W. (Eds.), Advances in Aquatic Microbiology, 2: 150–203. Academic Press, New York, London.Google Scholar
  15. Rinne, I. & Tarkiainen, E. 1978. Algal tests used to study the chemical factors regulating the growth of planktonic algae in the Helsinki sea area. Mitt. int. Ver. Limnol. 21: 527–546.Google Scholar
  16. Schindler, D. W. 1975. Whole-lake eutrophication experiments with phosphorus, nitrogen and carbon. Verh. int. Ver. Limnol. 19: 3221–3231.Google Scholar
  17. Singh, H. N. & Kumar, H. D. 1971. Physiology of heterocyst production in the blue-green alga Anabaena doliolum. I. Nitrate and light controls. Z. Allg. Mikrobiol. 11: 615–622.PubMedCrossRefGoogle Scholar
  18. Skulberg, O. M. 1978. Some observations on red-coloured species of Oscillatoria (Cyanophyceae) in nutrient-enriched lakes of southern Norway. Verh. int. Ver. Limnol. 20: 776–787.Google Scholar
  19. Van Liere, L. 1979. On Oscillatoria agardhii Gomont, experimental ecology and physiology of a nuisance bloom-forming cyanobacterium. Ph.D. Thesis, Universiteit van Amsterdam.Google Scholar
  20. Van Liere, L., Loogman, J. G. & Mur, L. R. 1978. Measuring light-irradiance in cultures of phototrophic micro-organisms. FEMS Microbiol. Letters 3: 161–164.CrossRefGoogle Scholar
  21. Van Liere. L. & Mur, L. R. 1979. Growth kinetics of Oscillatoria agardhii Gomont in continuous culture, limited in its growth by the light-energy supply. J. Gen. Microbiol. 115: 153–160.Google Scholar
  22. Zevenboom, W. & Mur, L. R. 1978a. N-uptake aad pigmentation of N-limited chemostat cultures and natural populations of Oscillatoria agardhii. Mitt. int. Ver. Limnol. 21: 261–274.Google Scholar
  23. Zevenboom, W. & Mur, L. R. 1978b. On nitrate uptake by Oscillatoria agardhii. Verh. int. Ver. Limnol. 20: 2302–2307.Google Scholar
  24. Zevenboom, W. & Mur, L. R. 1979. Influence of growth rate on short term and steady state nitrate uptake by nitrate- limited Oscillatoria agardhii. FEMS Microbiol. Letters, 6: 209–212.CrossRefGoogle Scholar
  25. Zevenboom, W., De Groot, G. J. & Mur, L. R. 1980. Effects of light on nitrate-limited Oscillatoria agardhii in chemostat cultures. Arch. Microbiol. 125: 59–65.CrossRefGoogle Scholar
  26. Zevenboom, W., Van der Does, J. & Mur, L. R. in prep. Non-heterocystous mutant of Aphanizomenon flos-aquae selected by competition in light-energy-limited continuous culture.Google Scholar

Copyright information

© Dr. W. Junk b.v. Publishers-The Hague, The Netherlands 1980

Authors and Affiliations

  • Wanda Zevenboom
    • 1
  • Luuc R. Mur
    • 1
  1. 1.Laboratorium voor MicrobiologieUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations