Skip to main content

The Role of Microlayers in Controlling Phytoplankton Productivity

  • Chapter
Hypertrophic Ecosystems

Part of the book series: Developments in Hydrobiology ((DIHY,volume 2))

Abstract

In virtually all measurements of phytoplankton productivity, the environment sampled is typical of the bulk or homogeneous water column and not reflective of localized discontinuities which exist in situ. This is particularly true in hypertrophic environments. Establishment of microenvironmental regions adjacent to actively growing microbial cells are shown in this study to impose significant growth rate constraints which are not suggested by bulk water sampling and ambient nutrient level.

Establishment of microlayers surrounding phytoplankton cells is shown as a function of fluid shear, rates of uptake, excretion and applicable chemical interconversion reactions. An analysis of basic aspects of molecular diffusion is presented for simple diffusion, diffusion of interactive ionic species and enzyme mediated transport.

Comparison of growth responses of competing algal organisms is presented. It appears that the blue-green alga Anabaena flos-aquae is less sensitive by a factor of three to decreases in fluid shear than is Selenastrum capricornutum. Evidence is presented for the role of microlayer establishment and associated enzyme transport systems as important factors in the initiation and reinforcement of blue-green algal blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Type Culture Collection. 1976. Catalogue of Strains I. 12th Ed. Rockville, Md. 441 pp.

    Google Scholar 

  • Brock, T. D. 1973. Evolutionary and ecological aspects of the cyanophytes. In: N. G. Carr and B. A. Whitton The Biology of Blue-green Algae. Univ. California Press, Berkeley, California: pp. 487–500.

    Google Scholar 

  • Emerson, S., Broecker, W. S. & Schindler, D. W. 1973. Gas exchange rates in a small lake as determined by the radon method. J. Fish. Res. Bd. Can. 30: 1475–1484.

    Article  CAS  Google Scholar 

  • Emerson. S. 1975. Gas exchange rates in small Canadian Shield Lakes. Limnol. Oceanogr. 20: 754–761.

    Article  CAS  Google Scholar 

  • Enns, T. 1967. Facilitation by carbonic anhydrase of carbon dioxide transport. Science 155: 44–47.

    Article  PubMed  CAS  Google Scholar 

  • Environmental Protection Agency. 1971. Algal Assay Procedure: Bottle Test. National Eutrophication Research Program, Corvallis, Oregon. 82 p.

    Google Scholar 

  • Felfoldy, L. J. M. 1962. On the role of pH and inorganic carbon sources in photosynthesis in unicellular algae. Acta Biol. Hung. 13: 207–214.

    CAS  Google Scholar 

  • Fogg. G. E. 1956. The comparative physiology and biochemistry of the blue-green algae. Bacterid. Rev. 20: 148–165.

    CAS  Google Scholar 

  • Gavis. J., Pasciak, W. J. & Ferguson, J. F. 1975. Diffusional transport and the kinetics of nutrient uptake by phytoplankton. Am. Soc. Chem., Div. Environ. Chem. 15: 25–26.

    CAS  Google Scholar 

  • Goldman, J. C. 1973. Carbon dioxide and pH: Effect on species succession of algae. Science 182: 306–307.

    Article  PubMed  CAS  Google Scholar 

  • Graham, D. & Reed, M. L. 1970. Carbonic anhydrase and the regulation of photosynthesis. Nature (New Biol.) 231: 81–83.

    Article  Google Scholar 

  • Hellebust, J. A. 1974. Extracellular products. In: W. D. P. Steward (ed.). Algal Physiology and Biochemistry. Botanical Monographs, Vol. 10. Univ. Calif. Press, Berkeley. Chapter 30.

    Google Scholar 

  • Jackson, D. F. 1964. Ecological factors governing blue-green algae blooms. Proc. 19th Indust. Waste. Conf. Purdue University, Lafayette, pp. 402–419.

    Google Scholar 

  • Keen an, J. D. 1972. Effects of Inorganic Carbon, Ortho- Phosphate and pH on Rates of Photosynthesis and Respiration in the Blue-green alga Anabaena flos-aquae. Doctoral Dissertation, Dept. Civil Engr., Syracuse University, Syracuse, New York. 112 p.

    Google Scholar 

  • Keenan, J. D. 1973. Response of Anabaena to pH, carbon and phosphorus. J. Environ. Eng. Div. ( A.S.C.E. ) 99: 607–620.

    CAS  Google Scholar 

  • Kern, D. B. 1960. The hydration of carbon dioxide. J. Chem. Ed. 37: 14–23.

    Article  CAS  Google Scholar 

  • King, D. L. 1970. The role of carbon in eutrophication. J. Water Pollut. Contr. Fed. 42: 2–35–2051.

    Google Scholar 

  • Lehninger, A. L. 1975. Biochemistry 2nd ed. Worth Publishers, Inc.. New York. 1104 p.

    Google Scholar 

  • Maren, T. H. 1976. Carbon anhydrase: Chemistry, physiology and inhibition. Physiol. Rev. 47: 595–781.

    Google Scholar 

  • Olofsson, J. A. & Woodard, F. E. 1977. Effects of pH and inorganic carbon concentrations on Anabaena flos-aquae and Selenastrum Capricornutum. Land and Water Resources Institute, University of Maine, Orono, 55 p.

    Google Scholar 

  • Olofsson, J. A. 1979. “A dissolved oxygen probe system for algal assays” (In Preparation).

    Google Scholar 

  • Pasciak, W. J. & Gavis, J. 1974. Transport limitation of nutrient uptake in phytoplankton. Limnol. Oceanogr. 19: 881–885.

    Article  Google Scholar 

  • Pasciak, W. J. & Gavis, J. 1975. Transport limited nutrient uptake rates in Ditylum brightwellii. Limnol. Oceanogr. 20 (4): 604–617.

    Article  Google Scholar 

  • Powell, E. O. 1967. The growth rate of microorganisms as a function of substrate concentration. In: Microbial Physiology and Continuous Culture. E. O. Powell et al., (eds.). H.M. Sta. Ofc., London pp. 34–35.

    Google Scholar 

  • Quinn, J. A. & Otto, N. E. 1971. Carbon dioxide exchange at the air-sea interface: Flux augmentation by chemical reaction. J. Geophys. Res. 76. 1539–1549.

    Article  CAS  Google Scholar 

  • Raven, J. A. 1970. Exogenous inorganic carbon sources in plant photosynthesis. Biol. Rev. ( Camb. ) 45: 167–221.

    Article  CAS  Google Scholar 

  • Schindler, D. W. 1971. Carbon, nitrogen and phosphorus and the eutrophication of freshwater lakes. J. Phycol. 7: 321–329.

    CAS  Google Scholar 

  • Schindler, D. W., Brunskill, G. J. Emerson, S. Broecker, W. S. & Peng, T. H. 1972. Atmospheric carbon dioxide: Its role in maintaining phytoplankton standing crops. Science 177: 1192–1194.

    Article  PubMed  CAS  Google Scholar 

  • Ward, W. J. III and Robb, W. L. 1967. Carbon dioxide-oxygen separation: Facilitated transport of carbon dioxide across a liquid film. Science 156: 1481–1484.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Dr. W. Junk b.v. Publishers-The Hague, The Netherlands

About this chapter

Cite this chapter

Olofsson, J.A. (1980). The Role of Microlayers in Controlling Phytoplankton Productivity. In: Barica, J., Mur, L.R. (eds) Hypertrophic Ecosystems. Developments in Hydrobiology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9203-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9203-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9205-4

  • Online ISBN: 978-94-009-9203-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics