Skip to main content

Economically Efficient Energy Futures

  • Chapter
Book cover Interactions of Energy and Climate

Abstract

The integrated burn of fossil fuel, and the associated risk of global climatic change, can be minimized by economically efficient energy policies based on very efficient energy use and rapid deployment of appropriate renewable energy sources. Such policies can stabilize the rate of burning fossil fuel and gradually, over a half-century or so, reduce it to approximately zero. Economically and technically sophisticated recent studies in many industrialized countries have shown that it is cheaper, faster, and easier to increase national energy productivity by severalfold than to increase energy supply. If such studies are taken as an existence proof, a worldwide Western European material standard of living for 8 × 109 people could be maintained with today’s rate of world energy use (~8 TW) or less, even with unchanged lifestyles in the developed countries and complete industrialization of the developing countries. At these cost-effective levels of energy productivity, virtually all long-term energy needs can be met by appropriate renewable sources that are already available and that are significantly cheaper, faster, and otherwise more attractive than competing power stations and synthetic-fuel plants. Only major efficiency improvements and, secondarily, appropriate renewable sources can substantially change the timing of, or reduce the risk of, CO2 problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. A B Lovins, Soft Energy Paths: Toward a Durable Peace, Harper & Row (NY), 1979,

    Google Scholar 

  2. A B Lovins, Soft Energy Paths: Toward a Durable Peace Pelican (UK), 1977, pp 63–66.

    Google Scholar 

  3. A B Lovins, I.79 supplement to 20–21.XI.79 testimony on Federal subsidies to nuclear power, available from IPSEP, 124 Spear St, San Francisco, CA 94105, USA, (415) 495–5210.

    Google Scholar 

  4. F Krause, “Energieversorgung der Bundesrepublik ohne Kernenergie und Erdöl”, Öko-Institut (Schönauerstr 3, 7800 Freiburg i Br), XII.79; see details in “Wirtschaftswachstum bei sinkendem Energieverbrauch”, id, 1980; summarized Soft En Notes 2:82–5 (1979).

    Google Scholar 

  5. A B Lovins, “Re-Examining the Nature of the ECE Energy Problem”, ECE(XXXIII)/2.I.G., UN Economic Commission for Europe (Geneva), I.78, reprinted En Policy 7:178–198 (IX.79).

    Google Scholar 

  6. A B Lovins, “Is Nuclear Power Necessary?”, Friends of the Earth Ltd (9 Poland St, London W1V 30G, UK), V.79, £1.50.

    Google Scholar 

  7. For suggestions on methodology, see D Brooks & S Casey, Alternatives 8(3/4): 10–23 (Summer/Fall 1979), Trent U (Peterborough, Ont K9J 7B8, Canada).

    Google Scholar 

  8. J Nørgård, Husholdninger og Energi, DEMO Projekt (Fysisk Lab. III, Danmarks Tekniske Højskole, 2800 Lyngby) and Polyteknisk Forlag (København), 1979.

    Google Scholar 

  9. Miljörörelsens Alternative Energiplan (MALTE), “Huvudrapport och Bilagor”, 3 vols, 1977 (Box 24023, 40022 Göteborg).

    Google Scholar 

  10. See also T B Johansson & P Steen, “Solar Sweden”, Secretariat for Future Studies (Fack, 10310 Stockholm), 1978.

    Google Scholar 

  11. E.g., both the 77- and 96-q CONAES scenarios assumed that US houses built in 2010 would be less heat-tight than the average Swedish house is today: L Schipper & A Lichtenberg, Science 194:1001–13 (1976), a classic study of technical coefficients.

    Article  Google Scholar 

  12. Demand & Conservation Panel of the Committee on Nuclear & Alternative Energy Systems (CONAES), Science 200:142–152 (1978).

    Article  Google Scholar 

  13. P G Schipper & E J Tuininga, Annex 6 to J Saint-Geours et al, “In Favour of an Energy-Efficient Society”, EEC (Brussels), 1979.

    Google Scholar 

  14. P Craig et al, eds, Distributed Energy Systems in California’s Future: Interim Report, HCP/P7405-01 and -02, ‘78, from DOE (9).

    Google Scholar 

  15. A B Lovins, 3d Regents’ Lecture, V.78, from IPSEP (3).

    Google Scholar 

  16. D B Brooks et al, “Some Scenarios of Energy Demand in Canada to the Year 2025”, reprinted at 1718–1801 in US Senate, Small Business & Interior Comms, Alternative Long-Range Energy Strategies: Additional Appendixes, Int Comm 94–47/92–137, USGPO, 1977.

    Google Scholar 

  17. A B Lovins, “Exploring Energy-Efficient Futures for Canada”, Conserver Society Notes 1(4):5–16 (1976) & USS op cit 1405–16.

    Google Scholar 

  18. R Sant, “The Least-Cost Energy Strategy”, Energy Productivity Ctr, Mellon Inst (Suite 1200, 1925 N Lynn St, Arlington, VA 22209), 1979. Sant has perhaps the best data base on costs.

    Google Scholar 

  19. Procs Sask Conf on Low En Passive Solar Housing (X.79), summ. in Soft En Notes no 9 (1980); Low Energy Passive Solar Housing Techniques, U Sask Div of External & Community Relns (Saskatoon S7N OWO), 1979;

    Google Scholar 

  20. A B Lovins, Soft En Notes 2:16–18 (1979);

    Google Scholar 

  21. A H Rosenfeld et al, LBL-8912, Lawrence Berkeley Lab (Berkeley, CA), 1980; Project 2020, How to Build a Superinsulated House, Cold Weather Edition (Box 81961, College, AK 99708), 1979, $3;

    Google Scholar 

  22. R Korda, “What About Windows?”, Ctr for Community Technology (1121 U Ave, Madison, WI 53715), 1978; G Leger house described in Soft En Notes no 9.

    Google Scholar 

  23. Procs, A H Rosenfeld et al & R Korda lap. Rosenfeld et al, & Korda, op cit (25); Soft En Notes 2:10–3 (1979); numerous reports of Swedish Bldg Res Counc (Stockholm) on exterior retrofit insulation; M Ross & R H Williams, “Drilling for Oil and Gas in Our Buildings”, PU/CEES 87, Ctr for Envtl Studies, Princeton U (Princeton, NJ 08540), VII.79.

    Google Scholar 

  24. W Murgatroyd & B C Wilkins, Energy 1:337–345 (1976). The FRG Fichtner-Studie draws similar conclusions but then ignores them.

    Article  Google Scholar 

  25. J Nørgård Husholdninger og Energi, DEMO Projekt (Fysisk Lab. III, Danmarks Tekniske Højskole, 2800 Lyngby) and Polyteknisk Forlag (København), 1979 lap. (14), Ch 13, summarized in En Policy 7:43–56 (III.79).

    Google Scholar 

  26. R U Ayres & N Narkus-Kramer, 76-WA/TS-4, ASME, 1976.

    Google Scholar 

  27. A Okagaki & J Benson, County Energy Plan Guidebook, Inst for Ecological Policies (9208 Christopher St, Fairfax, VA), 1979.

    Google Scholar 

  28. B Sørensen, “A Renewable Energy System for Scandinavia”, paper to Rome conf (8); Niels Bohr Institute, Copenhagen, 1979.

    Google Scholar 

  29. A B Lovins & critics, The Energy Controversy: Soft Path Questions & Answers, FOE (124 Spear, San Francisco 94105), 1979.

    Google Scholar 

  30. D Hayes, “Energy for Development: Third World Options”, paper 15, Worldwatch Inst (1776 Mass Ave NW, Wash DC 20036), 1977.

    Google Scholar 

  31. A Makhijani & A Poole, Energy and Agriculture in the Third World, Ballinger (Cambridge MA), 1975; A Makhijani, “Energy Policy for the Rural Third World”, IIED (10), 80p, 1976.

    Google Scholar 

  32. G Leach, “Report of the Energy Resources Wkg Gp”, Intl Conf Agricultural Production: R&D Strategies for the 1980s (Bonn, X.79), from IIED (10).

    Google Scholar 

  33. A K N Reddy, Bull Atom Scient, 28–33 V.78 & 54–55 XII.78; A K N Reddy & K K Prasad, “Technological Alternatives and the Indian Energy Crisis”, Econ & Pol Wkly 12(33–34SN): 1465–1502 (VIII.77), Bombay.

    Google Scholar 

  34. Soft En Notes 2:89–90 (XII.79).

    Google Scholar 

  35. J W Howe, Energy for the Villages of Africa, Overseas Development Council (Washington DC), 1977;

    Google Scholar 

  36. N L Brown & J W Howe, Science 199:651–7 (1978).

    Article  Google Scholar 

  37. J W Tatom (4070 Ridge Rd, Smyrna, GA 30080) has published reports on low-technology pyrolyzers for Senegal, Ghana, and Indonesia. They seem highly effective.

    Google Scholar 

  38. A K N Reddy (Indian Inst of Science, 560012 Bangalore).

    Google Scholar 

  39. Soft En Notes 1:10–12, 45–6, 81–3 (1978), 2:80–1 (1979). The 9 million figure is from Peking Rev XII.78, cited by T B Taylor.

    Google Scholar 

  40. K Butti & J Perlin, A Golden Thread: 2500 Years of Solar Architecture & Technology, Cheshire/Van Nostrand Reinhold (NY), 1980.

    Google Scholar 

  41. A B Lovins, Envir Conserv 3(1):3-14 & USS (22) 1450–1461.

    Google Scholar 

  42. W Bach et al, eds, Man’s Impact on Climate, Elsevier (Amsterdam), 1979. Umberto Columbo provided a 15-TW scenario in 1979 as part of his critical review of the IIASA Energy Project.

    Google Scholar 

  43. M Ross & R H Williams, “Energy & Economic Growth”, US Congress Joint Ec Comm (Energy Subcomm), 1977.

    Google Scholar 

  44. Am Inst of Physics Conf Proc 25, Efficient Use of Energy, 1975, AIP (NY). This concept reflects only the process-independent energy needed for a change of state, not the opportunity to redefine initial or final states to provide the same function.

    Google Scholar 

  45. E.g. W Harman, An Incomplete Guide to the Future, Stanford [U] Alumni Assn, 1976; see also polls in USS (22), 2186–2196.

    Google Scholar 

  46. Science Council of Canada, Canada as a Conserver Society, 1977.

    Google Scholar 

  47. H Daly, Steady-State Economics, W H Freeman (San Francisco), ‘78.

    Google Scholar 

  48. A B Lovins, Openpit Mining, 1973, from FOE (35).

    Google Scholar 

  49. P F Chapman, Metals & Materials 107–111, II.74.

    Google Scholar 

  50. NAS/NRC, Resources and Man, W H Freeman (San Francisco), 1969.

    Google Scholar 

  51. Including improved product longevity and low-entropy design to facilitate repair, recycling, and remanufacture—which should all reduce total energy needs. See Ayres & Narkus-Kramer (30); T V Long II & L Schipper, LBL-5986 (25), 1977; P F Chapman, Metals and Materials 311–319, VI.74; D Hayes, “Repairs, Reuse, Recycling”, paper 23, Worldwatch Inst (1776 Mass Ave NW, Wash DC 20036), lap. (39), 1978.

    Google Scholar 

  52. D Brooks, “Minerals: an Expanding or a Dwindling Resource?”, Energy Mines & Resources Canada (Ottawa), 1973.

    Google Scholar 

  53. P G Kihlstedt, Scand J Metall 4:145–9 (1975).

    Google Scholar 

  54. H H Kellogg, “Conservation & Metallurgical Process Design”, 13th Wernher Mem Lect, Inst Min Metall (London), 1977.

    Google Scholar 

  55. R U Ayres, “Substitution Possibilities & Problems in Regard to the Major Metals”, TAD/RD/ENV/R.7, UNCTAD/UNEP, Geneva, 1974.

    Google Scholar 

  56. R U Ayres, et al, Critical Materials: A Problem Assessment, IRT-348-R, Intl Res & Technol Corp (1501 Wilson Blvd, Arlington, VA), 1974.

    Google Scholar 

  57. H E Goeller & A M Weinberg, “The Age of Substitutability”, Inst for Energy Analysis (Oak Ridge) & ORNL, 18.IX.75;

    Google Scholar 

  58. and see generally V K Smith, ed, Scarcity & Growth Reconsidered, RFF/Johns Hopkins U Press (Baltimore/London), 1979.

    Google Scholar 

  59. See A B Lovins, Soft Energy Paths: Toward a Durable Peace, Harper & Row (NY), 1979, lap. Lovins (1), Ch 4.

    Google Scholar 

  60. A B Lovins, “Electric Utility Investments: Excelsior or Confetti?”, III.79 E F Hutton paper, from IPSEP (3). Note also that if long-run price elasticity of demand >l, as it may be, then revenue elasticity <0: higher prices (entailed by higher marginal costs) reduce revenue (population and income held constant).

    Google Scholar 

  61. A B Lovins, Annu Rev En 3:477–517 (1978) & Soft En Notes no 5.

    Article  Google Scholar 

  62. A B Lovins, Annu Rev En (1), Ch 5.

    Google Scholar 

  63. M F Cantley, Options ‘79:3, IIASA (Laxenburg), 4–5; J F Fisher (GE), “Optimum Size of Subcritical Fossil Fueled Electric Generating Units”, in The Scale in Production Systems, IIASA, in press, 1980; A Ford & T Flaim, LA-8033-MS, Los Alamos Sci Lab, X.79; C Komanoff, “Escalation in Capital Costs of Nuclear & Coal-Fired Plants”, submitted to Science, I.80; see also (72).

    Google Scholar 

  64. If indeed it ever was (48).

    Google Scholar 

  65. H Tsuchiya, “From Energy Hunting Civilization To Energy Cultivating Civilization”, Res Inst for Systs Technol (Tokyo), 1979; A B Lovins, preface to Japanese edn of (1), Jiji (Tokyo), 1979.

    Google Scholar 

  66. B Sørensen (34), “Global Energy Policy & Develt Strategy”, 1979.

    Google Scholar 

  67. Olivier (21) calculates 0.4 kW despite per capita increases on 1976 UK levels of 47% in car travel, 71% in inland freight, 382% in international air travel, etc.

    Google Scholar 

  68. T B Taylor (Dept of Aerospace & Mech Scis, Princeton U (26)), Prospects for Worldwide Use of Solar Energy, report to Rockefeller Fndn (NY), 1979, unpublished.

    Google Scholar 

  69. E Kahn, Annu Rev En 4:313–352 (1979).

    Article  Google Scholar 

  70. Procs 1st New England Site-Built Solar Collector Conf, Mech Eng Dept, Worcester (MA) Polytechnic Inst, 1978.

    Google Scholar 

  71. A B Lovins, Soft En Notes 2:16–18 (1979) & Sol Age 4(5):21, 24.

    Google Scholar 

  72. M Grenon at 42 in W Häfele et al, 2d Status Rpt on the IIASA Project on Energy Systems 1975, IIASA (Laxenburg), & 4 (F3).

    Google Scholar 

  73. J M Weingart, “The Helios Strategy”, IIASA, 8.II.78.

    Google Scholar 

  74. E.g. in the solar heat/nuclear heat-pump comparison (A B Lovins, Science 201:1077–8 (1978),

    Article  Google Scholar 

  75. A B Lovins, Science lap 204:124–9 (1979)): low nuclear costs, baseload = average price, peak COP = 2.5, high fixed charge rate, no cash-flow differences or differential escalation, no cheap solar designs (passive, integrated, pond, neighborhood, simple).

    Article  Google Scholar 

  76. R Stobaugh & D Yergin, eds, Energy Future, Random House (NY), ‘79.

    Google Scholar 

  77. See e.g. Soft En Notes 2:51 (1979) and the reversal of priorities in the 1978–81 Swedish R&D budget ((6), note 75).

    Google Scholar 

  78. See A B Lovins, Soft Energy Paths: Toward a Durable Peace, Harper & Row (NY), 1979 lap. (1) generally.

    Google Scholar 

  79. L Gerlach, “Energy Wars & Social Change”, Dept of Anthropology, U Minn (Minneapolis 55455), 1979;

    Google Scholar 

  80. A B Lovins, “Democracy & the Energy Mobilization Board”, 1979, from IPSEP (3).

    Google Scholar 

  81. See M Schachter, DOE/PE-0013, VII.79; CEP study of Long Island (summarized in Soft En Notes no 9, 1980); “Employment Impact of the Solar Transition”, US Congress Joint Ec Comm, 6.IV.79.

    Google Scholar 

  82. A B Lovins, “Energy, National Security, & Resilience”, in preparation for submission to CEQ (Washington DC) IV.81.

    Google Scholar 

  83. J P Holdren, in (20), 2:1–63, plus ‘79 critique of Inhaber study.

    Google Scholar 

  84. See (1), Ch 11, and Lovins, Foreign Affairs VII.80, in prep.

    Google Scholar 

  85. A B Lovins, 45 Geo Wash L Rev 911–943 (1977) & (22) 1417–49.

    Google Scholar 

  86. Justice (British Section, Intl Commission of Jurists), “Plutonium and Liberty”, London, 1978.

    Google Scholar 

  87. A B Lovins, World Energy Strategies, FOE/Ballinger, ‘77, 49–50.

    Google Scholar 

  88. IEA, Economic & Environmental Impacts of a U.S. Nuclear Moratorium 1985–2010, MIT Press, 1979, at 59 (T3–1), 264–5, 271.

    Google Scholar 

  89. V Taylor, “The Easy Path Energy Plan”, UCS (1208 Mass Ave, Cambridge, MA 02138), 1979.

    Google Scholar 

  90. E N Lorenz, Tellus 77:321–3 (1965), Meterol Monog 8(30):1–3 (68).

    Article  Google Scholar 

  91. P Junger, 27 Case Western Reserve L Rev 3–335 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 D. Reidel Publishing Company

About this chapter

Cite this chapter

Lovins, A.B. (1980). Economically Efficient Energy Futures. In: Bach, W., Pankrath, J., Williams, J. (eds) Interactions of Energy and Climate. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9111-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9111-8_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-1177-9

  • Online ISBN: 978-94-009-9111-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics