Application of X-ray Photoelectron Spectroscopy to the Study of Mineral Surface Chemistry

  • Mitchell H. Koppelman
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 63)

Abstract

A majority of the chemical reactions generally associated with clay minerals, metal oxides, and other soil-related minerals occur at the interfaces between the minerals and their surroundings. Two of these interfaces occur at the gas/solid, and liquid/solid reaction sites with the common component being the solid mineral surface. Few reactions related to soil environments involve chemical reactions generated at atom sites in a mineral’s bulk. Therefore, much useful chemical insight can be achieved by examining the chemistry of atoms and reaction products associated with the surface region of these minerals.

Keywords

Magnesium Dust Graphite Zirconia Silicate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, I., J.M. Thomas, and G.M. Bancroft, 1972. An ESCA study of silicate minerals. Earth Planet. Sci. Lett. 16: 429–432.CrossRefGoogle Scholar
  2. 2.
    Adams, J.M., S. Evans, P.I. Reid, J.M. Thomas, and J.M. Walters, 1977. Quantitative analysis of aluminosilicates and other solids by x-ray photoelectron spectroscopy. Anal. Chem. 49: 2001–2007.CrossRefGoogle Scholar
  3. 3.
    Adams, J.M. and S. Evans. 1979. Exchange and selective surface uptake of cations by layer silicates using x-ray photoelectron spectroscopy (XPS). Clays Clay Miner. 27: 248 252.Google Scholar
  4. 4.
    Alvarez, R., C.S. Fadley, J.A. Silva, and G. Uehara. 1976. A study of silicate adsorption on gibbsite (AI(OH)3) by x-ray photoelectron spectroscopy (XPS). Soil Sci. Soc. Amer. J. 40: 615–617.CrossRefGoogle Scholar
  5. 5.
    Anderson, P.R. and W.E. Swartz, Jr. 1974. X-ray photoelectron spectroscopy of some aluminosilicates. Inorg. Chem. 13: 2293–2294.CrossRefGoogle Scholar
  6. 6.
    Baird, R.J., C.S. Fadley, S.K. Kawamoto, M. Mehta, R. Alvarez, and J.A. Silva. 1976. Concentration profiles for irregular surfaces from x-ray photoelectron angular distributions. Anal. Chem. 48: 843–846.CrossRefGoogle Scholar
  7. 7.
    Bancroft, G.M., J.R. Brown, and W.S. Fyfe. 1977a. Quantitative x-ray photoelectron spectroscopy (ESCA): Studies of Ba2+ sorption on calcite. Chem. Geol. 19: 131–144.CrossRefGoogle Scholar
  8. 8.
    Bancroft, G.M., J.R. Brown, and W.S. Fyfe. 1977b. Calibration studies for quantitative x-ray photoelectron spectroscopy of ions. Anal. Chem. 49: 1044–1048.CrossRefGoogle Scholar
  9. 9.
    Bancroft, G.M., J.R. Brown, and W.S. Fyfe. 1979. Advances in, and applications of, x-ray photoelectron spectroscopy (ESCA) in mineralogy and geochemistry. Chem. Geol. 25: 227–243.CrossRefGoogle Scholar
  10. 10.
    Betteridge, D., J.C. Carver, and D.M. Hercules. 1973. Devaluation of the gold standard in x-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 2: 327–334.CrossRefGoogle Scholar
  11. 11.
    Burness, J.H., J.G. Dillard, and L.T. Taylor. 1975. An x-ray photoelectron spectroscopic study of cobalt (II) schiff base complexes and their oxygenation products. J. Amer. Chem. Soc. 97: 6080–6088.CrossRefGoogle Scholar
  12. 12.
    Carriere, B. and J.P. Deville. 1977. X-ray photoelectron study of some silicon- oxygen compounds. J. Electron Spectrosc. Relat. Phenom. 10: 85–91.CrossRefGoogle Scholar
  13. 13.
    Castle, J.E., L.B. Hazell, and R.H. West. 1979. Chemical shifts in Al-Si compounds by Zr La photoelectron spectrometry. J. Electron Spectrosc. Relat. Phenom. 16: 97–106.CrossRefGoogle Scholar
  14. 14.
    Counts, M.E., J.S.C. Jen, and J.P. Wightman. 1973. An electron spectroscopy for chemical analysis study of lead adsorbed on montmorillonite. J. Phys. Chem. 77: 1924–1925.CrossRefGoogle Scholar
  15. 15.
    Defosse, C., P. Canesson, P.G. Rouxhet, and B. Delmon. 1978. Surface characterization of silica-aluminas by photoelectron spectroscopy. J. Catal. 51: 269–277.CrossRefGoogle Scholar
  16. 16.
    Dianis, W.P., and J.E. Lester. 1973. External standards in x-ray photoelectron spectroscopy. Anal. Chem. 45: 1416–1420.CrossRefGoogle Scholar
  17. 17.
    Errerson, A.B. 1979. An XPS investigation of the effect of pH on chromium and cobalt adsorption on clay minerals. M.S. thesis, VPI & SU, Blacksburg, Va., USA.Google Scholar
  18. 18.
    Hercules, D.M. 1974. Electron spectroscopy for chemical analysis. J. Electron Spectrosc. Relat. Phenom. 5: 811–826.CrossRefGoogle Scholar
  19. 19.
    Huntress, W.T., Jr., and L. Wilson. 1972. An ESCA study of lunar and terrestrial materials. Earth Planet. Sci. Lett. 15: 59–64.CrossRefGoogle Scholar
  20. 20.
    Jaegle, A., A. Kalt, G. Nanse, and J.C. Peruchetti. 1978. Contribution a I’etude de l’effet de charge sur échantillon isolant en spectroscopie de photoelectrons (XPS). J. Electron Spectrosc. Relat. Phenom. 13: 175–186.CrossRefGoogle Scholar
  21. 21.
    Koppelman, M.H. 1976. An x-ray photoelectron spectroscopic investigation of the adsorption of metal ions on marine clay minerals. Ph.D. thesis, VPI & SU, Blacksburg, Va., USA. 251 pp.Google Scholar
  22. 22.
    Koppelman, M.H. and J.G. Dillard. 1975. An ESCA study of sorbed metal ions on clay minerals. In: T.M. Church (ed.). Marine chemistry in the coastal environment, ACS Symposium Ser. #18, pp. 186–201.CrossRefGoogle Scholar
  23. 23.
    Koppelman, M.H., and J.G. Dillard. 1977a. Unpublished data.Google Scholar
  24. 24.
    Koppelman, M.H., and J.G. Dillard. 1977b. A study of the adsorption of Ni(II) and Cu(II) by clay minerals. Clays Clay Miner. 25: 457–462.CrossRefGoogle Scholar
  25. 25.
    Koppelman, M.H., and J.G. Dillard. 1978. An x-ray photoelectron spectroscopic (XPS) study of cobalt adsorbed on the clay mineral chlorite. J. Colloid Interface Sci. 66: 345–351.CrossRefGoogle Scholar
  26. 26.
    Koppelman, M.H., and J.G. Dillard. 1979. The application of x-ray photoelectron spectroscopy (XPS or ESCA) to the study of mineral surface chemistry. Proc. Int. Clay Conf. 1978 (Pub. 1979): 153–164.Google Scholar
  27. 27.
    Koppelman, M.H., and J.G. Dillard. 1980. Adsorption of Cr(NH3)63+ and Cr(en)j3+ on clay minerals. Characterization of chromium using x-ray photo- electron spectroscopy. Clays Clay Miner. 28: 000.Google Scholar
  28. 28.
    Koppelman, M.H., J.G. Dillard, A.B. Emerson, and J.R. Furey. 1979. Unpublished data.Google Scholar
  29. 29.
    Koppelman, M.H., A.B. Emerson, and J.G. Dillard. 1980. On the nature of adsorbed Cr(III) on chlorite and kaolinite: An x-ray photoelectron spectroscopic study. Clays Clay Miner. 28: 119–124.CrossRefGoogle Scholar
  30. 30.
    Lagaly, G. and A. Weiss. 1969. Determination of the layer charge in mica-type layer silicates. Proc. Int. Clay Conf. 1969 1: 61–80.Google Scholar
  31. 31.
    Lindsay, J.R., H.J. Rose, W.E. Swartz Jr., P.H. Watts Jr., and K.A. Rayburn. 1973. X-ray photoelectron spectra of aluminum oxides: structural effects on the chemical shift. Appt. Spectros. 27: 1–4.CrossRefGoogle Scholar
  32. 32.
    Lunsford, J.H., P.J. Hutta, M.J. Lin, and K.A. Whitehorst. 1978. Cobalt nitrosyl complexes in zeolites A, X, and Y. Inorg. Chem. 17: 606–610.CrossRefGoogle Scholar
  33. 33.
    Murray, J.W. and J.G. Dillard. 1979. The oxidation of cobalt (II) adsorbed on manganese dioxide. Geochim. Cosmochim. Acta 43: 781–787.CrossRefGoogle Scholar
  34. 34.
    Nicholls, C.J., D.S. Urch, and A.N.L. Kay. 1972. Determination of coordination number in some compounds of magnesium and aluminum: a comparison of x-ray photoelectron (ESCA) and x-ray emission spectroscopies. J.C.S. Chem. Comm. 1972: 1198–1199.CrossRefGoogle Scholar
  35. 35.
    Petrovic, R., R.A. Berner, and M.B. Goldhabcr. 1976. Rate control in dissolution of alkali feldspars - I. Study of residual grains by x-ray photoelectron spectroscopy. Geochim. Cosmochim. Acta 40: 537–548.CrossRefGoogle Scholar
  36. 36.
    Schultz, H.D., C.J. Vesely, and D.W. Langer. 1974. Electron binding energies for silicon materials occurring in respirable coal dust. Appt. Spectrosc. 28: 374–375.CrossRefGoogle Scholar
  37. 37.
    Seals, R.D., R. Alexander, L.T. Taylor, and J.G. Dillard. 1973. Core electron binding energy study of group lib-Vila compounds. Inorg. Chem. 12: 2485–2487.CrossRefGoogle Scholar
  38. 38.
    Siegbahn, K., C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S.E. Karlsson, I. Lindgren, and B. Kindbert. 1967. ESCA, Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy, Almqvist and Wiksells, Uppsala, p. 276.Google Scholar
  39. 39.
    Stucki, J.W. and C.B. Roth. 1977. Oxidation-reduction mechanism for structural iron in nontronite. Soi/ Sci. Soc. Amer. J. 41: 808–814.CrossRefGoogle Scholar
  40. 40.
    Stucki, J.W., C.B. Roth, and W.E. Baitinger. 1976. Analysis of iron-bearing clay minerals by electron spectroscopy for chemical analysis (ESCA). Clays Clay Miner. 24: 289–292.CrossRefGoogle Scholar
  41. 41.
    Swartz, W.E. Jr., P.H. Watts Jr., J.C. Watts, J.W. Brasch, and E.R. Lippincott. 1972. Comparison of internal mixing and vacuum deposition procedures for calibrating ESCA spectra. Anal. Chem. 44: 2001–2005.CrossRefGoogle Scholar
  42. 42.
    Tewari, P.H., and W.J. Lee. 1975. Adsorption of Co(II) at the oxide-water interface. J. Colloid Interface Sci. 52: 77–88.CrossRefGoogle Scholar
  43. 43.
    Tewari, P.H. and N.S. Mclntyre. 1975. Characterization of adsorbed cobalt at the oxide-water interface. A/ChE. Symposium Ser. 71: 134–137.Google Scholar
  44. 44.
    Thomassin, J.H., J. Goni, P. Baillif, and J.C. Touray. 1976. Étude par spectrometry ESCA des premiers stades de la lixiviation du chrysotile en milieu acide organique. C.R. Acad. Sci., Paris, Sèr. D 283: 131–134.Google Scholar
  45. 45.
    Thomassin, J.H., J. Goni, P. Baillif, J.C. Touray, and M.C. Jaurand. 1977. An XPS study of the dissolution kinetics of chrysotile in 0.1 N oxalic acid at different temperatures. Phys. Chem. Miner. 1: 385–398.Google Scholar
  46. 46.
    Thomassin, J.H., J.C. Touray, and J. Tricket. 1976. Étude par spectrometry ESCA des premiers stades d’altération d’une obsidienne: le compostement relatif de l’aluminium et du silicium. C.R. Acad. Sci., Paris, Sér. D 282: 1229–1232.Google Scholar
  47. 47.
    Urch, D.S. and S. Murphy. 1974. The relationship between bond lengths and orbital ionization energies for a series of aluminosilicates. J. Electron Spec- trosc. Relat. Phenom. 5: 167–171.CrossRefGoogle Scholar
  48. 48.
    Vin, L.I., S. Ghose, and I. Adler. 1971. Core electron binding energy difference between bridging and non-bridging oxygen atoms in a silicate chain. Science 173: 633–635.CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1980

Authors and Affiliations

  • Mitchell H. Koppelman
    • 1
  1. 1.Georgia Kaolin ResearchSpringfieldUSA

Personalised recommendations