Skip to main content

The Use of Fourier Transform Methods for the Measurement of Infrared Emission Spectra

  • Conference paper
Book cover Analytical Applications of FT-IR to Molecular and Biological Systems

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 57))

Abstract

For a sample to be in thermal and radiative equilibrium with an environment at the same temperature, it is necessary for the amount of radiation absorbed from the environment to be equal to the amount emitted to the environment. This must be so in all directions and at all wavenumbers or wavelengths. This consideration is the basis of Kirchoff’s Law [1] which states that at a given temperature the absorptance, a, of a sample is equal to its emissivity,ɛ [2], The absorptance is the fractional absorption, and the emissivity the fractional emission, of the radiation that is characteristic of the temperature of the system. Such radiation is termed ‘blackbody’ radiation. It depends only on the temperature, and is independent of chemical composition etc. It follows from Kirchoff’s Law that a perfect absorber is a perfect emitter, and a selective absorber is a selective emitter at the same positions in the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Houghton and S. D. Smith, Infrared Physics, Oxford Univ. Press, Oxford, 1966.

    Google Scholar 

  2. The nomenclature and symbols used are those recommended by the International Union of Pure and Applied Chemistry (I.U. P.A.C.) [in ‘Manual of Symbols and Terminology for Physicochemical Quantities and Units’ (1979), I.U.P.A.C., Oxford, and Pure and Applied Chemistry, (1979)], and the In-ternational Union of Pure and Applied Physics, (I.U.P.A.P.), [in document U.I.P. 20, ‘Symbols, Units and Nomenclature in Physics’ (1978) and Physica, 93A, 1 (1978)].

    Google Scholar 

  3. E. Steger and R. Rasmus, Appl. Spectrosc., 28, 376 (1974).

    Article  CAS  Google Scholar 

  4. D. Kember and N. Sheppard, Appl. Spectrosc., 29, 496 (1975).

    Article  CAS  Google Scholar 

  5. J. E. Blanke, S. E. Vincent, and J. Overend, Spectrochim. Acta, 32A, 163 (1976).

    Article  Google Scholar 

  6. M. J. D. Low, Appl. Spectrosc., 22, 463 (1968).

    Article  CAS  Google Scholar 

  7. D. Kember, D. H. Chenery, N. Sheppard, and J. Fell, Spectrochim. Acta, 35A, 455 (1979).

    Article  Google Scholar 

  8. P. R. Griffiths, Chemical Infrared Fourier Transform Spectroscopy, Wiley, New York, 1975.

    Google Scholar 

  9. P. R. Griffiths, C. T. Foskett, and R. Curbelo, Appl. Spectrosc. Rev., 6, 31 (1972).

    Article  CAS  Google Scholar 

  10. H. A. Gebbie and R. Q. Twiss, Rep. Prog. Phys., 24, 729 (1966); K. D. Moller and W. G. Rothschild, Far-Infrared Spectroscopy, Wiley-Interscience, New York, 1971.

    Google Scholar 

  11. J. Connes and P. Connes, Infrared Astronomy, Gordon and Breach, New York, 1968, 193.

    Google Scholar 

  12. See for example: L. S. Bernstein, D. C. Robertson, J. A. Conant, and B. P. Sandford, Appl. Optics, 18, 2454 (1979), and other papers on atmospheric optics in the same Journal.

    Google Scholar 

  13. M. J. D. Low and H. Inoue, Anal. Chem., 36, 2397 (1964).

    Article  CAS  Google Scholar 

  14. M. J. D. Low, Nature, 208, 1089 (1965).

    Article  Google Scholar 

  15. M. J. D. Low and H. Inoue, Can. J. Chem., 43, 2047 (1965).

    Google Scholar 

  16. M. J. D. Low, L. Abrams, and I. Coleman, Chem. Commun., 389 (1965).

    Google Scholar 

  17. M. J. D. Low, J. Catal., 4, 719 (1965).

    Article  CAS  Google Scholar 

  18. M. J. D. Low, Separatum Experientia, 22, 262 (1966).

    Google Scholar 

  19. M. J. D. Low and I. Coleman, Spectrochim. Acta, 22, 369 (1966).

    Article  CAS  Google Scholar 

  20. M. J. D. Low and F. D. Clancy, Env. Sci. Technol., 73 (1967).

    Google Scholar 

  21. H. W. Prengle, Jr., C. A. Morgan, C. S. Fang, L. K. Huang, P. Campani and W. W. Wu, Env. Sci. Technol., 1_, 417 (1973).

    Google Scholar 

  22. J. B. Bates, A. S. Quist, and G. E. Boyd, Chem. Phys. Lett. 16, 473 (1972).

    Article  CAS  Google Scholar 

  23. J. B. Bates and G. E. Boyd, Appl. Spectrosc., 27, 204 (1973).

    Article  CAS  Google Scholar 

  24. P. R. Griffiths, Appl. Spectrosc., 26, 73 (1972).

    Article  CAS  Google Scholar 

  25. E. Baumgarten, Spectrochim. Acta, A32, 865 (1976).

    Google Scholar 

  26. M. Primet, P. Fouilloux, and B. Imelik, Surface Science, 85, 457 (1979).

    Article  CAS  Google Scholar 

  27. J. G Moehlmann, J. T. Gleaves, J. W. Hudgens, and J. D. McDonald, J. Chem. Phys., 60, 4790 (1974).

    Article  CAS  Google Scholar 

  28. J. G. Moehlmann and J. D. McDonald, J. Chem. Phys., 62, 3052, 3061 (1974).

    Google Scholar 

  29. M. J D. Low, J. C. McManus, and L. Abrams, Appl. Spectrosc. Rev., 5, 171 (1972).

    Article  Google Scholar 

  30. G. Fabbri and P. Baraldi, Appl. Spectrosc., 26, 593 (1972).

    Article  CAS  Google Scholar 

  31. L. M. Gratton, S. Paglia, F. Scattaglia, and M. Cavallini, Appl. Spectrosc., 32, 310 (1978).

    Article  CAS  Google Scholar 

  32. A. Veno and C. 0. Bennett, Bull. Chem. Soc. Jap., 52, 2551 (1979).

    Google Scholar 

  33. M. Adachi, K. Kishi, T. Imanaka,S. Teranishi, Bull, Chem. Soc. Jap., 40 1290 (1967).

    Article  CAS  Google Scholar 

  34. D. R, Kember, Ph.D. thesis, University of East Anglia, Norwich, 1976.

    Google Scholar 

  35. D. H. Chenery, J. Fell, and N. Sheppard, unpublished work.

    Google Scholar 

  36. O. Koga, T. Onishi, and K. Tamaru, Chem. Commun., 464 (1974).

    Google Scholar 

  37. R. G. J. Miller and B. C. Stace, Laboratory Methods in Infrared Spectroscopy ( 2nd Edition ), Heyden, London, 1972.

    Google Scholar 

  38. R. G. Greenler, Surface Science, 69, 649 (1977).

    Article  Google Scholar 

  39. D. H. Chenery and N. Sheppard, unpublished work.

    Google Scholar 

  40. R. G. Greenler, J. Chem. Phys., 44, 310 (1966); 50, 1963 (1969).

    Article  CAS  Google Scholar 

  41. R. J. Brown and B. G. Young, Appl. Opt., 14, 2927 (1975).

    CAS  Google Scholar 

  42. JB. Bates in Fourier Transform Infrared Spectroscopy; Applications to Chemical Systems, Vol. I, ( JR. Ferraro L. J. Basile, eds.) Academic Press, New York, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 D. Reidel Publishing Company

About this paper

Cite this paper

Sheppard, N. (1980). The Use of Fourier Transform Methods for the Measurement of Infrared Emission Spectra. In: Durig, J.R. (eds) Analytical Applications of FT-IR to Molecular and Biological Systems. NATO Advanced Study Institutes Series, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9070-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9070-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9072-2

  • Online ISBN: 978-94-009-9070-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics