Apodization and Phase Correction

  • John E. Bertie
Conference paper
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 57)


Consider the Michelson Interferometer shown in Fig. 1 to be perfectly aligned. The intensity, Io(x), of radiation that reaches the detector when the path-difference between the two arms of the interferometer is x is given by
$$I(x) = \int\limits_0^\infty {{I_o}(k) \cdot T(k) \cdot S(k)(1 + \cos 2\pi kx)dk;} $$
(1) k is the wavenumber of the radiation in the gas, or vacuum, which fills the dashed box in Fig. 1; I0(k) is the intensity of radiation emitted by the source at wavenumber k; S(k) is the transmittance of the sample at wavenumber k; and T(k) is the part of the transmittance of the instrument that is independent of path difference. For many purposes, Eq. 1 can be abbreviated to
$$I(x) = \int\limits_0^\infty {A(k)(1 + \cos 2\pi kx)dk} $$
. (2)


Fourier Transform Central Peak Phase Correction Path Difference Michelson Interferometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Bell, Introductory Fourier Transform Spectroscopy, Academic Press, New York (1972).Google Scholar
  2. 2.
    P. R. Griffiths, Chemical Infrared Fourier Transform Spectroscopy, John Wiley, New York (1975).Google Scholar
  3. 3.
    A. E. Martin, Infrared Instrumentation and Techniques, Elsevier, Amsterdam (1966), Chapter 4.Google Scholar
  4. 4.
    K. D. Moller and W. G. Rothschild, Far-Infrared Spectroscopy, Wiley-Interscience, New York (1971), Chapter 4.Google Scholar
  5. 5.
    D. C. Champeney, Fourier Transforms and their Physical Applications, Academic Press, New York (1973).Google Scholar
  6. 6.
    R. Bracewell, The Fourier Transform and its Applications, McGraw-Hill, New York (1965).Google Scholar
  7. 7.
    E. G. Codding and G. Horlick, Appl. Spectrosc., 27, 85 (1973).CrossRefGoogle Scholar
  8. 8.
    Wo Yuen and G. Horlick, Anal. Chem., 49, 1446 (1977); Appl. Spectrosc., 32, 38 (1978).Google Scholar
  9. 9.
    M. Forman, W. H. Steel, and G. A. Vanasse, J. Opt. Soc. Am., 56, 59 (1966).CrossRefGoogle Scholar
  10. 10.
    L. Mertz, Infrared Physics, 7, 17 (1967).CrossRefGoogle Scholar
  11. 11.
    R. B. Sanderson and E. E. Bell, Appl. Optics, 12, 266 (1973).CrossRefGoogle Scholar
  12. 12.
    H. Sakai, G. A. Vanasse, and M. L. Forman, J. Opt. Soc. Am., 58, 84 (1968).CrossRefGoogle Scholar
  13. 13.
    Reference 5, page 9&10.Google Scholar
  14. 14.
    Reference 1, page 34.Google Scholar
  15. 15.
    Reference 5, page 22.Google Scholar
  16. 16.
    Wo Yuen, Ph.D. Thesis, University of Alberta, Edmonton, Canada (1978).Google Scholar
  17. 17.
    A. S. Filler, J. Opt. Soc. Am, 54, 762 (1964).Google Scholar
  18. 18.
    R. H. Norton and R. Beer, J. Opt. Soc. Am., 66, 259 (1976).CrossRefGoogle Scholar
  19. 19.
    P. Jacquinot and B. Roizen-Dossier, Progress in Optics III, 29 (1964).Google Scholar
  20. 20.
    G. Horlick GM. Hieftje, Page 153 of ‘Contemporary topics in Analytical and Clinical Chemistry’, Volume 3 (Eds. DM. Hercules, GM. Hieftje, LR. Snyder, MA. Evenson ), Plenum Publishing Corporation, New York (1978).Google Scholar
  21. 21.
    J. Connes in Proceedings of the Aspen 1970 International Conference on Fourier Spectroscopy, U. S. Air Force Cambridge Research Laboratory, Bedford, Mass., (1971).Google Scholar
  22. 22.
    Reference 1, pages 159–164.Google Scholar
  23. 23.
    CA. Anderson DR. Mattson, Reported to Nicolet Users Meeting, Madison, Wisconsin, October, 1979Google Scholar

Copyright information

© D. Reidel Publishing Company 1980

Authors and Affiliations

  • John E. Bertie
    • 1
  1. 1.Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations