Modal and Relevance Logics: 1977

  • Nuel D. BelnapJr.
Part of the Synthese Library book series (SYLI, volume 149)


If one looks at classical logic as reflected in an often-used textbook such as that of Mendelson (1964), it appears to divide into five central topics. The first four form a kind of tower. At the bottom is propositional logic, the logic of connectives, in this case solely truth-functional connectives. The second story adds quantifiers and perhaps identity. On the third floor resides arithmetic, with all its Goedelian incompleteness. At the top is set theory, under which rubric for present purposes I wish also to include type theory. Then along side the whole, perhaps acting as some kind of flying buttress, is that analysis and sorting of functions known as recursive function theory.


Modal Logic Classical Logic Propositional Logic Individual Concept Relevance Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackermann, W. ‘Begrandung einer strengen Implikation’, J. Symbolic Logic 21 (1956), 113–128.CrossRefGoogle Scholar
  2. Anderson, A. R., ‘Improved Decision Procedures for Lewis’s Calculus S4 and Von Wright’s Calculus M’ J. Symbolic Logic 19 (1954) 201–214. Correction in ibid., 20 (1955), 150.Google Scholar
  3. Anderson, A. R. and Belnap, N. D., Jr., Entailment: The Logic of Relevance and Necessity, Vol. 1, Princeton University Press, Princeton, 1975.Google Scholar
  4. Anderson, A. R. and Belnap, N. D., Jr., Entailment: The Logic of Relevance and Necessity, Vol. 2, Princeton University Press, Princeton, 1980.Google Scholar
  5. Barcan M. and Ruth, C., ‘A Functional Calculus of First Order Based on Strict Implication’, L. Symbolic Logic 11 (1946), 1–16.CrossRefGoogle Scholar
  6. Barcan, M. and Ruth, C., ‘The Deduction Theorem in a Functional Calculus of First Order Based on Strict Implication’, L. Symbolic Logic 11 (1946a), 115–118.CrossRefGoogle Scholar
  7. Bayart, A., ‘La correction de la logique modale du premier et second ordre S5’, Logique et Analyse Vol. 1, 1958, pp. 28–44.Google Scholar
  8. Bressan, A., A General Interpreted Modal Calculus, Yale University Press, New Haven and London, 1972.Google Scholar
  9. Bressan, A., The Interpreted Type-Free Modal Calculus MC’, Rend. Sem. Mat. Univ. Padova 49 (1973), 157–194; 50 (1973), 19–57; and 51 (1974), 1–25.Google Scholar
  10. Broido, J., ‘Von Wright’s Principle of Predication — Some Clarifications’, J. Philosophical Logic 4 (1974), 1–11.Google Scholar
  11. Broido, J., ‘On the Eliminability of de re Modalities in Some Systems’, Notre Dame Journal of Formal Logic 17 (1976), 79–88.CrossRefGoogle Scholar
  12. Carnap, R., ‘Modalities and Quantification’, J. Symbolic Logic 11 (1946), 33–64.CrossRefGoogle Scholar
  13. Carnap, R., Meaning and Necessity, The University of Chicago Press, Chicago, 1947.Google Scholar
  14. Collier, K. W., Gasper, A., and Wolf, R. G. (eds.), Proceedings of the International Conference on Relevance Logics. In memorian: Alan Ross Anderson. Forthcoming.Google Scholar
  15. Curry, H. B., A Theory of Formal Deducibility. Notre Dame Mathematical Lectures, No. 6, Notre Dame University Press, Notre Dame, 1950. (Second Edition, 1955.)Google Scholar
  16. Daniels, C. B. and Freeman, J. B., ‘A Second-Order Relevance Logic With Modality’, 1977. ( Mimeographed. )Google Scholar
  17. Feys, R., ‘Les logiques nouvelles des modalities’, Revue neoscholastique de philosophic 40 (1937), 517–553; and 41 (1938), 217–252.Google Scholar
  18. Fine, K., 1975. Proceedings of the Third Scandinavian Logic Symposium, Universitet Uppsala, Uppsala, 1973, pp. 15–31. (Studies in logic and the foundations of mathematics, Vol. 82 ), North-Holland, Amsterdam.Google Scholar
  19. Fine, K., ‘Properties, Propositions and Sets’, J. Philosophical Logic 6 (1977), 135–191.CrossRefGoogle Scholar
  20. Fitch, F. B., Symbolic Logic, The Ronald Press Company, New York, 1952.Google Scholar
  21. Fitch, F. B., ‘A Complete and Consistent Modal Set Theory’, J. Symbolic Logic 32 (1967), 93–103.CrossRefGoogle Scholar
  22. Freeman, J. B., ‘Quantification, Identity, and Opacity in Relevant Logic’, 1974, Mimeographed. To appear in Collier, Gasper, and Wolf, 1980.Google Scholar
  23. Gallin, D., Intentional and Higher-Order Modal Logic, University of California, Berkeley, Doctoral Dissertation, 1972.Google Scholar
  24. Goedel, K., ‘Zum intuitionistischen Aussagenkalkul’, Anzeiger der Akademie der Wissen- schaften im Wein, Vol. 69, No. 7, 1933, pp. 65–66. Reprinted in Ergebnisse eines mathematischen Kolloguiums 4 (1933), 40.Google Scholar
  25. Gupta, A., The Logic of Common Nouns: An Investigation in Quantified Modal Logic, Yale University Press, New Haven and London, 1980.Google Scholar
  26. Halmos, P., Algebraic Logic, Chelsea Publishing Company, New York, 1962.Google Scholar
  27. Helman, G., Restrictions on Lambda Abstraction and the Interpretation of Some Non- Classical Logics, University of Pittsburgh, Doctoral Dissertation, 1977.Google Scholar
  28. Hintikka, K. J. J., ‘Modality and Quantification’, Theoria 27 (1961), 110–128.Google Scholar
  29. Hughes, G. E. and Cresswell, M. J., An Introduction to Modal Logic, Methuen and Co., London, 1968.Google Scholar
  30. Kanger, S., Provability in Logic, Almqvist and Wiksell, Stockholm-Gotenborg-Uppsala, 1957.Google Scholar
  31. Kaplan, D., Review of a 1963 Article by S. Kripke, J. Symbolic Logic 31 (1966), 120–122.Google Scholar
  32. Kleene, S. C., Introduction to Metamathematics, Van Nostrand, New York, 1952.Google Scholar
  33. Kripke, S. A., ‘A Completeness Theorem in Modal Logic’, J. Symbolic Logic, 24 (1959), 1–15.CrossRefGoogle Scholar
  34. Kripke, S. A., The Undecidability of Monadic Modal Quantification Theory’, Zeit- schrift fur mathematische Logik und Grundlagen der Mathematik 8 (1962), 113— 116.Google Scholar
  35. Lewis, C. I., A Survey of Symbolic Logic, University of California Press, Berkeley and Los Angeles, 1918. Second edition, Abridged, Dover Publications, Inc. New York, 1960.Google Scholar
  36. Lewis, C. I. and Langford, C. H., Symbolic Logic, The Century Co., New York and, London, 1932. Second edition, Dover Publications, Inc., New York, 1959.Google Scholar
  37. Lewis, D. K., ‘Counterpart Theory and Quantified Modal Logic’, J. Philosophy 65 (1968), 113–126.CrossRefGoogle Scholar
  38. Massey, G. J., Understanding Symbolic Logic, Harper and Row, New York, Evanston, and London, 1970.Google Scholar
  39. McKinsey, J. C. C., ‘A Solution of the Decision Problem for the Lewis Systems S2 and S4, With an Application to Topology’, J. Symbolic Logic 6 (1941), 117–134.CrossRefGoogle Scholar
  40. Mendelson, E., Introduction to Mathematical Logic, D. van Nostrand Co., Princeton, 1964.Google Scholar
  41. Meredith, C. A., Interpretations of Different Modal Logics in the ‘Property Calculus’, 1956, Mimeographed. Christchurch, Philosophy Department, Canterbury University College (recorded and expanded by A. N. Prior).Google Scholar
  42. Montague, R., ‘Universal Grammar’, Theoria 36 (1970), 373–398. Reprinted, with other relevant papers, in Formal Philosophy: Selected Papers of Richard Montague, R.. H. Thomason (ed.), Yale University Press, New Haven and London, 1974.Google Scholar
  43. Parsons, T., ‘Essentialism and Quantified Modal Logic’, Philosophical Review 78 (1969), 35–52.CrossRefGoogle Scholar
  44. Pottinger, G., ‘Normalization as a Homomorphic Image of Cut-Elimination’, 1976. Mimeographed.Google Scholar
  45. Prior, A. N., Formal Logic, Oxford University Press, 1955. (Second edition, 1961.)Google Scholar
  46. Quine, W. V., ‘The Problem of Interpreting Modal Logic’, J. Symbolic Logic 12 (1947), 43–48.CrossRefGoogle Scholar
  47. Segerberg, K., An Essay in Classical Modal Logic, Vols. 1, 2, 3, Filosofiska Studier, No. 13, (Filosofiska Foereningen och Filosofiska Institutionenvid UppsalaUniversitet, Uppsala, 1971.Google Scholar
  48. Tichy, P., ‘On de dicto Modalities in Quantified S5’, J. Philosophical Logic 2 (1973). 387–392.CrossRefGoogle Scholar
  49. Thomason, R. H., ‘Modal Logic and Methaphysics’, in The Logical Way of Doing Things, K. Lambert (ed.), Yale University Press, New Haven, 1969, pp. 119–146.Google Scholar
  50. Thomason, R. H., ‘Some Completeness Results for Modal Predicate Calculi’, in Philosophical Problems in Logic, K. Lambert (ed.), D. Reidel, Dordrecht, 1970.Google Scholar
  51. von Wright, G. H., An Essay in Modal Logic, North-Holland, Amsterdam, 1951.Google Scholar
  52. Zaman, J. J., Modal Logic: The Lewis-Modal Systems, Oxford University Press, Oxford, 1973.Google Scholar

Copyright information

© D. Reidel Publishing Company 1981

Authors and Affiliations

  • Nuel D. BelnapJr.
    • 1
  1. 1.University of PittsburgUSA

Personalised recommendations