Logic and the Methodology of Empirical Sciences

  • Evandro Agazzi
Part of the Synthese Library book series (SYLI, volume 149)


For some time, one of the most typical (and emphasized) characteristics of ‘modern’ logic was that of qualifying as ‘scientific’, in contradistinction to traditional logic, which was meant to be simply ‘philosophical’. We shall not be interested in analysing the hidden meaning underlying that distinction, which surely expressed, at an initial stage, a kind of mistrust of traditional logic: those times — which go back to the early stages of logical positivism — are quite far away by now, and a number of distinguished scholars openly declare themselves concerned with problems of ‘philosophical logic’. What might still be worth remembering are rather the reasons why modern logic claimed to be ‘scientific’, and these are essentially twofold. On the one hand, the characteristic of scientificity appeared to be the fact that the new logic had adopted the configuration of a respectable mathematical discipline, including the feature of having been explicity axiomatized. On the other hand, its appurtenance to the family of sciences was evidenced by the fact that its aim was assume to be, among others, that of providing an exact (and also practical) analysis of the processes or ideally to be adopted in scientific investigation and theory building. It is, obviously, the second aspect that made modern logic relevant to the methodology of science, with particular emphasis upon the methodology of formal sciences, i.e., mathematics.


Inductive Logic Theoretical Term Empirical Science Empirical Theory Modern Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achinstein P., ‘The Problem of Theoretical Terms’, American Philosophical Quarterly 2 (1965), 193–203.Google Scholar
  2. Achinstein, P., Concepts of Science. A Philosophical Analysis, Johns Hopkins Press, Baltimore, Maryland, 1968.Google Scholar
  3. Agazzi, E., Temi e Problemi di Filosofia della Fisica, Manfredi, Milano, 1969; Reprint: Abete, Roma, 1974.Google Scholar
  4. Agazzi, E., ‘The Concept of Empirical Data. Proposals for an Intensional Semantics of Empirical Theories’, in Przeilęcki, Szaniawski, and Wójcicki (1976), 14–157.Google Scholar
  5. Birkhoff, G. and von Neumann, J., ‘The Logic of Quantum Mechanics’, Annals of Mathematics, 1936 pp. 823 ff.Google Scholar
  6. Bunge, M. (ed.), Quantum Theory and Reality, Berlin-Heidelberg-New York, Springer, 1967a.Google Scholar
  7. Bunge, M., Foundations of Physics, Berlin-Heidelberg-New York, Springer, 1967b.Google Scholar
  8. Bunge, M., ‘What Are Physical Theories About?’, American Philosophical Quarterly 3 (1969), 61–99.Google Scholar
  9. Bunge, M., Treatise on Basic Philosophy, 4 Vols., D. Reidel, Dordrecht, Holland, 1974–79.Google Scholar
  10. Carnap, R., ‘Testability and Meaning’, Philosophy of Science 3 (1936), 419–471; and 4 (1937), 1–40.CrossRefGoogle Scholar
  11. Carnap, R., Introduction to Semantics, Harvard University Press, Cambridge, Mass., 1942.Google Scholar
  12. Carnap, R., ‘Meaning Postulates’, Philosophical Studies III (1952), 65–73.CrossRefGoogle Scholar
  13. Carnap, R., ‘The Methodological Character of Theoretical Concepts’, in Feigl, Scriven, and Maxwell (1956), pp. 38–76.Google Scholar
  14. Carnap, R., Introduction to Symbolic Logic and its Applications, Dover, New York, 1958.Google Scholar
  15. Carnap, R., Hahn, H., and Neurath, O., Wissenschaftliche Weltauffassung, Der Wiener Kreis, Wien, 1929.Google Scholar
  16. Colodny, R. G. (ed.), Beyond the Edge of Certainty, Prentice Hall, Englewood Cliffs, 1965.Google Scholar
  17. Cornman, J. W., ‘Craig’s Theorem, Ramsey-Sentences and Scientific Instrumentalism’, Synthese 25 (1972), 82–128.CrossRefGoogle Scholar
  18. Craig, W., ‘On Axiomatizability Within a System’, Journal of Symbolic Logic 18 (1953), 30–32.CrossRefGoogle Scholar
  19. Craig, W., ‘Replacement of Auxiliary Expressions’, Philosophical Review 65 (1956), 38–55.CrossRefGoogle Scholar
  20. Craig, W., ‘Linear Reasoning: A New Form of the Herbrand-Gentzen Theorem’, Journal of Symbolic Logic 22 (1957), 250–268.CrossRefGoogle Scholar
  21. Craig, W., ‘Bases for First-Order Theories and Subtheories’, Journal of Symbolic Logic 25 (1960), 97–142.CrossRefGoogle Scholar
  22. Craig, W. and Vaught, R. L., ‘Finite Axiomatizability Using Additional Predicates’, Journal of Symbolic Logic 23 (1958), 289–308.CrossRefGoogle Scholar
  23. Crossley, J. and Dummett, M. (eds.), Formal Systems and Recursive Functions North- Holland Publ. Co., Amsterdam, 1965.Google Scholar
  24. Dalla Chiara, M. L. and Toraldo Di Francia, G., ‘A Logical Analysis of Physical Theories’, Rivista delNuovo Cimento, Serie 2, 3 (1973), 1–20.CrossRefGoogle Scholar
  25. Danto, A. and Morgenbesser, S. (eds.), Philosophy of Science, Meridian Books, New York, 1960.Google Scholar
  26. Ellis, B., Basic Concepts of Measurement, Cambridge University Press, London, 1966.Google Scholar
  27. Essler, W., Wissenschaftstheorie I. Definition und Reduktion, Alber, Freiburg-München, 1970a.Google Scholar
  28. Essler, W., Induktive Logik. Grundlagen und Voraussetzungen, Alber, Freiburg-Miinchen, 1970b.Google Scholar
  29. Essler, W., ‘Die Kreativität der Bilateralen Reduktionssätze’, Erkenntnis 9 (1975), 383–392.Google Scholar
  30. Feigl, H., Scriven, M., and Maxwell, G. (eds.), Minnesota Studies in the Philosophy of Science, University of Minnesota Press, Minneapolis, Vol. I (1956), Vol. II ( 1958 ), Vol. Ill (1963).Google Scholar
  31. Feigl, H. and Maxwell, G. (eds.), Current Issues in the Philosophy of Science, Holt, Rinehart, and Winston, New York, 1961.Google Scholar
  32. Feyerabend, P., ‘Problems of Empiricism’, in Colodny (1965), pp. 145–260.Google Scholar
  33. Fine, K., ‘Vagueness, Truth and Logic’, Synthese 30 (1975), 265–300.CrossRefGoogle Scholar
  34. Goguen, J. H., ‘The Logic of Inexact Concepts’, Synthese 19 325–373Google Scholar
  35. Harris, J. H., ‘On Comparing Theories’, Synthese 33 (1975), 29–76.CrossRefGoogle Scholar
  36. Hempel, C. G., ‘Problems and Changes in the Empiricist Criterion of Meaning’, Revue Internationale de Philosophic 11 (1950), 41–63.Google Scholar
  37. Hempel, C. G., ‘The Concept of Cognitive Significance: A Reconsideration’, Proceedings of the American Academy of Arts and Sciences 80 (1951), 61–67.CrossRefGoogle Scholar
  38. Hempel, C. G., Fundamentals of Concept Formation in Empirical Science, Chicago University Press, 1952.Google Scholar
  39. Hempel, C. G., ‘The Theoretician’s Dilemma’, in Feigl, Scriven, and Maxwell (1958), pp. 37–98. Reprinted in Hempel (1965).Google Scholar
  40. Hempel, C. G., Aspects of Scientific Explanation, Free Press, New York, 1965.Google Scholar
  41. Hilbert, D., ‘Mathematische Probleme’, Reprinted in Hilbert (1965), III (1901), 290–329.Google Scholar
  42. Hilbert, D., ‘Axiomatisches Denken’, Reprinted in Hilbert (1965), III (1918), 146 - 156.Google Scholar
  43. Hilbert, D., Gesammelte Abhandlungen, Chelsea, New York, 1965 ( Reprint).Google Scholar
  44. Hilbert, D., ‘Approximate Truth and Truthlikeness’, in Przełecki, Szaniawski, and Wójcicki (1976), pp. 19–42.Google Scholar
  45. Hintikka, J., ‘Distributive Normal Forms and Deductive Interpolation’, Zeitschrift für Math. Logik u. Grundlagen derMathematik 10 (1964), 185–191.CrossRefGoogle Scholar
  46. Hintikka, J., ‘Distributive Normal Forms in First-Order Logic’, (1965), in Crossley and Dummett (1950), pp. 47–90.Google Scholar
  47. Hintikka, J. (ed.), Rudolf Carnap, Logical Empiricist: Materials and Perspectives, D. Reidel, Dordrecht, Holland, 1975.Google Scholar
  48. Hintikka, J. and Suppes, P. (eds.), Information and Inference, D. Reidel, Dordrecht, Holland, 1970.Google Scholar
  49. Hintikka, J. and Suppes, P. (eds.), Information and Inference, D. Reidel, Dordrecht, Holland, 1970.Google Scholar
  50. Kanger, S., ‘Measurement: An Essay in Philosophy of Science’, Theoria 38 (1972), 1–44.CrossRefGoogle Scholar
  51. Krantz, D. H., Luce, R. D., Suppes, P., and Tversky, A., Foundations of Measurement, Vol. 1, Academic Press, New York, 1971.Google Scholar
  52. Kueker, D. W., ‘Generalized Interpolation and Definability’, Annals of Mathematical Logic 1 (1970), 423–468.CrossRefGoogle Scholar
  53. Nagel, E., ‘The Meaning of Reduction in Natural Science’, in Danto and Morgenbesser (1960), pp. 288–312.Google Scholar
  54. Nagel, E., ‘The Meaning of Reduction in Natural Science’, in Danto and Morgenbesser (1960), pp. 288–312.Google Scholar
  55. Nagel, E., The Structure of Science, Harcourt, Brace and World, New York, 1961.Google Scholar
  56. Nagel, E., Suppes, P., and Tarski, A. (eds.), Logic, Methodology and Philosophy of Science, Stanford University Press, Stanford, 1962.Google Scholar
  57. Pfanzagl, J., Theory of Measurement, Wiley, New York, 2nd edition, 1968. Phisica-Verlag, Würzburg-Wien, 1971.Google Scholar
  58. Popper, K. R., Conjectures and Refutations, Basic Books, New York, 1962.Google Scholar
  59. Popper, K. R., Objective Knowledge, Clarendon Press, Oxford, 1972.Google Scholar
  60. Przełęcki, M., The Logic of Empirical Theories, Routledge and Kegan Paul, London, 1969.Google Scholar
  61. Przełęcki, M., ‘Z semantyki pojeć otwartych’, Studia Logica 15 (1964), 189–220.CrossRefGoogle Scholar
  62. Przełęcki, M., ‘Fuzziness as Multiplicity’, Erkenntnis 10 (1976), 371–380.CrossRefGoogle Scholar
  63. Przełęcki, M. and Wójcicki, R., ‘The Problem of Analiticity’, Synthese 19 (1969), 374–399.CrossRefGoogle Scholar
  64. Przełęcki, M. and Wójcicki, R., ‘Inessential Parts of Extensions of First-Order Theories’, Studia Logica 28 (1971), 83–99.CrossRefGoogle Scholar
  65. Przełęcki, M., Szaniawski, K., and Wójcicki, R. (eds.), Formal Methods in the Methodology of Empirical Sciences, D. Reidel, Dordrecht, Holland, 1976.Google Scholar
  66. Ramsey, F. P., ‘Theories’, in The Foundations of Mathematics and Other Logical Essays, 1931. Reprint: Littlefield, Adams, and Paterson, N.J. (1962), pp. 212–236.Google Scholar
  67. Ramsey, F. P., ‘Theories’, in The Foundations of Mathematics and Other Logical Essays, 1931. Reprint: Littlefield, Adams, and Paterson, N.J. (1962), pp. 212–236.Google Scholar
  68. Rozeboom, W., ‘Studies in the Empiricist Theory of Scientific Meaning I—II’, Philosophy of Science 27 (1960), 359–373.CrossRefGoogle Scholar
  69. Sellars, W., ‘The Language of Theories’, in Feigl and Maxwell (1961), pp. 57–77.Google Scholar
  70. Sellars, W., ‘The Language of Theories’, in Feigl and Maxwell (1961), pp. 57–77.Google Scholar
  71. Sellars, W., Science, Perception and Reality, Routledge and Kegan Paul, London, 1963.Google Scholar
  72. Sellars, W., Philosophical Perspectives, Thomas, Springfield, 111., 1967.Google Scholar
  73. Sneed, J. D., The Logical Structure of Mathematical Physics, D. Reidel, Dordrecht, Holland, 1971.Google Scholar
  74. Spector, M., ‘Theory and Observation I—II’, The British Journal for Philosophy of Science 7 (1966), 1–20; 89–104.Google Scholar
  75. Stegmüller, W., Probleme und Resultate der Wissenschaftstheorie und Analytischen Philosophie, Band I: Wissenschaftliche Erklärung und Begrundung, Springer, Berlin- Heidelberg-New York, 1969.Google Scholar
  76. Stegmüller, W., Probleme und Resultate…, Band II: Theorie und Erfahrung. Erster Halbband: Begriffsformen, Wissenschaftssprache empirische Signifikanz und theore- tische Begriffe, Ibidem, 1970.Google Scholar
  77. Stegmüller, W., Probleme und Resultate…, Band II: Theorie und Erfahrung. Zweiter Halbband: Theorienstrukturen und Theoriendynamik, Ibidem, 1973.Google Scholar
  78. Stegmüller, W., ‘Structures and Dynamics of Theories’, Erkenntnis 9 (1975), 75–100.CrossRefGoogle Scholar
  79. Suppes, P., Studies in the Methodology and Foundations of Science, D. Reidel, Dordrecht, Holland, 1969.Google Scholar
  80. Suppes, P. and Zinnes, J., ‘Basic Measurement Theory’, in R. D. Luce, R. R. Bush, and E. H. Galanter (eds.), Handbook of Mathematical Psychology, Vol. 1, Wiley, New York, 1963, pp. 3–76.Google Scholar
  81. Tichy, P., ‘On Popper’s Definitions of Verisimilitude’, British Journal for Philosophy of Science 25 (1974), 155–160.CrossRefGoogle Scholar
  82. Tichy, P., ‘Verisimilitude Redefined’, British Journal for Ph ilosophy of Science 27 (1976), 25–42.CrossRefGoogle Scholar
  83. Trapp, R., ‘Eine Verfeinerung des Reduktionsverfahrens zur Einfiihrung ven Disposi- tionspradikanten’, Erkenntnis 9 (1975), 355–382.CrossRefGoogle Scholar
  84. Tuomela, R., Theoretical Concepts, Springer, Wien-New York, 1973.Google Scholar
  85. von Helmholtz, H., ‘Zählen und Messen erkenntnistheoretisch betrachtet’, in Philosophise he Aufsätze E. Zeller gewidmet, Leipzig, 1887.Google Scholar
  86. von Neumann, J., Mathematische Grundlagen der Quantenmechanik, Springer, Berlin, 1932.Google Scholar
  87. Wójcicki, R., ‘Set Theoretical Representation of Empirical Phenomena’, Journal of Philosophical Logic 3 (1974a), 337–343.CrossRefGoogle Scholar
  88. Wójcicki, R., Metodologia formalna nauk empiryczych, Wydawnictwo Polskiej Akademii Nauk, Warszawa, 1974b.Google Scholar
  89. Wójcicki, R., ‘Basic Concepts of Formal Methodology of Empirical Sciences’, Ajatus 35 (1973), 168–195.Google Scholar
  90. Wójcicki, R., ‘The Factual Content of Empirical Theories’, in Hintikka (1975), pp. 55–82.Google Scholar
  91. Woodger, J., The Axiomatic Method in Biology, Cambridge University Press, Cambridge, 1937.Google Scholar
  92. Zadeh, L. A., ‘Fuzzy Logic and Approximate Reasoning’, Synthese 30 (1975), 407–428.CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1981

Authors and Affiliations

  • Evandro Agazzi
    • 1
  1. 1.University of GenovaItaly

Personalised recommendations