Recursion Theory

  • Hans Hermes
Part of the Synthese Library book series (SYLI, volume 149)


The theory of recursive functions can be characterized as a general theory of computation. It has been created in the twentieth century.


Word Problem Turing Machine Recursive Function Computable Function Diophantine Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackermann, W., ‘Zum Hilbertschen Aufbau der reellen Zahlen’, Math. Ann. 99 (1928), 118–133.CrossRefGoogle Scholar
  2. Ackermann, W., Solvable Cases of the Decision Problem, North-Holland, Amsterdam, 1954, 121 pp.Google Scholar
  3. Aho, A. V. (ed.), Currents in the Theory of Computing, Prentice-Hall, Englewood Cliffs, N.J., 1973, 255 pp.Google Scholar
  4. Asser, G., ‘Rekursive Wort funk tionen’, Z. Math. Logik und Grundlagen der Mathematik 6 (1960), 258–278.CrossRefGoogle Scholar
  5. Belyakin, N. V., ‘Generalized Computability and Second Degree Arithmetic’, Algebra and Logic 9 (1970), 255–243.CrossRefGoogle Scholar
  6. Berger, R., ‘The Undecidability of the Domino Problem’, Memoirs Am. Math. Soc. 66 (1966), 72 pp.Google Scholar
  7. Boone, W. W., ‘Certain Simple Unsolvable Problems in Group Theory’, Proc. Kon. Nederl. Akad. A60 (1957), 22–27.Google Scholar
  8. Boone, W. W., Cannonito, F. B., and Lyndon, R. C., World Problems. Decision Problems and the Burnside Problem in Group Theory, North-Holland, Amsterdam, 1973, 658 pp.Google Scholar
  9. Brainerd, W. S. and Landweber, L. H., Theory of Computation, Wiley, New York, 1974, 357 pp.Google Scholar
  10. Church, A, A., ‘An Unsolvable Problem of Elementary Number Theory’, Am. J. Math. 58 (1936), 345–363. (Reprinted in Davis, 1965 ).CrossRefGoogle Scholar
  11. Church, A., ‘A Note on the Entscheidungsproblem’, J. Symbolic Logic 1 (1936), 40–41. Corr. ibid. pp. 101–102. (Included in Davis, 1965.)Google Scholar
  12. Cobham, A., ‘The Intrinsic Computational Difficulty of Functions’, in Y. Bar-Hillel (ed.), Logic, Methodology and Philosophy of Science, North-Holland, Amsterdam, 1965, pp. 24–30.Google Scholar
  13. Crossley, J. N. (ed.), ‘Reminiscenses of Logicians’, in Algebra and Logic, Lecture Notes No. 450, Springer, Heidelberg, 1975, pp. 1–62.Google Scholar
  14. Curry, H. B. and Feys, R., Combinatory Logic I, North-Holland, Amsterdam, 1968, 433 pp.Google Scholar
  15. Curry, H. B., Hindley, J. R., and Seldin, J. P., Combinatory Logic II, North-Holland, Amsterdam, 1972, 534 pp.Google Scholar
  16. Davis, M., Computability and Unsolvability, McGraw-Hill, New York, 1958, 235 pp.Google Scholar
  17. Davis M. (ed.), The Undecidable. Raven Press, Hewlett, N. Y., 1965, (Basic papers of the theory of recursive functions by Gödel, Church, Turing, Rosser, Kleene, Post, commented by the editor.) 440 pp.Google Scholar
  18. Davis, M., ‘Hilbert’s Tenth Problem is Unsolvable’, Am. Math. Monthly 80 (1973), 233–269.CrossRefGoogle Scholar
  19. Dehn,M., ‘ÜberunendlichediskontinuierlicheGmppen’,AfflrM. Ann. 71 (1912), 116-144.Google Scholar
  20. Dyck, W., ‘Gruppentheoretische Studien’, Math. Ann. 20 (1882), 1–44 (II. ibid. 22 (1883), 70–108.)Google Scholar
  21. Edmonds, J., ‘Paths, Trees, and Flowers’, Canadian J. Math. 17 (1965), 449–467.CrossRefGoogle Scholar
  22. Ershov, Yu. L., Lavrov, I. A., Taimanov,A. D.,andTaitslin,M. A., ‘Elementary Theories’, Russian Mathematical Surveys 20 (1965), 35–105.CrossRefGoogle Scholar
  23. Fenstad, J. E., ‘On Axiomatizing Recursion Theory’, in J. E. Fenstad and P. G. Hinman (eds.), Generalized Recursion Theory, North-Holland, Amsterdam, 1974, pp. 385–404.CrossRefGoogle Scholar
  24. Fenstad, J. E. and Hinman, P. G. (eds.), Generalized Recursion Theory, North-Holland, Amsterdam, 1974, 464 pp.Google Scholar
  25. Fitch, F.B., ‘Recursive Functions in Basic Logic’, J. Symbolic Logic 21 (1956), 337–346.CrossRefGoogle Scholar
  26. Friedberg, R. M., ‘Two Recursive Enumerable Sets of Incomparable Degrees of Unsolvability’, Proc. Nat. Acad. Sci. 43 (1957), 236–238.CrossRefGoogle Scholar
  27. Friedman, H. M., ‘Axiomatic Recursive Function Theory’, in R. O. Gandy and C. E. M. Yates (eds.), Logic Colloquium 69, North-Holland, Amsterdam, 1971, pp. 113–137.CrossRefGoogle Scholar
  28. Gandy, R. O. and Yates, C. E. M. (eds.), Logic Colloquium 69, North-Holland, Amsterdam, 1971, 465 pp.Google Scholar
  29. Gödel, K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme Y, Monatsh. Math Phys. 38 (1931), 173–198.CrossRefGoogle Scholar
  30. Gödel, K., On Undecidable Propositions of Formal Mathematical Systems, Princeton, N.J., 1934, 30 pp. (Included in Davis, 1965, with a postscriptum by Gödel, 1964.)Google Scholar
  31. Gödel K., Remarks Before the Princeton Bicentennial Conference on Problems in Mathematics 1946. (Included in Davis, 1965.)Google Scholar
  32. Grzegorczyk, A., ‘Some Classes of Recursive Functions’, Rozprawy mat. 4 (1953), 1–45.Google Scholar
  33. Hebeisen, F., ‘Charakterisierung der Aufzählungsreduzierbarkeit’, Achiv für math. Logik 18. (1977), 89–96.Google Scholar
  34. Herbrand, J. ‘Sur la non-contradiction de l’arithmetique’, J. reine angew. Math. 166 (1932), 1–8.CrossRefGoogle Scholar
  35. Hermes, H., ‘Ideen von Leibzin zur Grundlagenforschung: Die ars inveniendi und die ars iudicandi’, in Akten des internationalen Leibnizkongresses Hannover, 14. — 19.11.1966, III, Literatur und Zeitgescheben, Hannover, 1969, pp. 92–102.Google Scholar
  36. Hermes, H., ‘Entscheidungsprobleme und Dominospiele’, in K. Jacobs (ed.), Selecta Mathematica II, Springer, Heidelberg, 1970, pp. 114–140.Google Scholar
  37. Hermes, H., A Simplified Proof for the Unsolvability of the Decision Problem in the Case ∀∃∀ in R. O. Gandy and C. E. M. Yates (eds.), Logic Colloquium 69, North-Holland, Amsterdam, 1971, pp. 307–310.CrossRefGoogle Scholar
  38. Hopcroft, J. E. and Ullman, J. D., Formal Languages and their Relation to Automata, Addison-Wesley, Reading, Mass., 1969, 250 pp.Google Scholar
  39. Kleene, S. C., ‘General Recursive Functions of Natural Numbers’, Math. Ann. 112 (1936), 727–742. (Reprinted in Davis, 1965.)Google Scholar
  40. Kleene, S. C., ‘On Notation of Ordinal Numbers’, J. Symbolic Logic 3 (1938), 150–155.CrossRefGoogle Scholar
  41. Kleene, S. C., ‘Recursive Predicates and Quantifiers’, Transactions Am. Math. Soc. 53 (1943), 41–73. (Reprinted in Davis, 1965.)Google Scholar
  42. Kleene, S. G., ‘Hierarchies of Number-Theoretic Predicates’, Bull. Am. Math. Soc. 61 (1955), 193–213.CrossRefGoogle Scholar
  43. Kleene, S. C. and Post, E. L., ‘The Upper Semi-Lattice of Degrees of Recursive Unsolvability’, Ann. Math. 59 (1954), 379–407.CrossRefGoogle Scholar
  44. Madison, F.W., ‘A Note on Computable Real Fields’, J. Symbolic Logic 35 (1970), 239–241.CrossRefGoogle Scholar
  45. Markov, A. A., ‘On the Impossibility of Certain Algorithms in the Theory of Associative Systems’, C. R. (Dokl.) Acad. Sci USSR (n. s.) 55 (1947), 583–586.Google Scholar
  46. Markov, A. A., Theory of Algorithms, The Israel Program for Sci. Transl., Jerusalem, 1962,444 pp. (Russ, original, 1954 ).Google Scholar
  47. Matijasevitč, J. V„ ‘Enumerable Sets are Diophantic’, Soviet Math. Dokl. 11 (1970), 345–357.Google Scholar
  48. Moschovakis, Y. N., ‘Axioms for Computing Theories — First Draft’, in R. O. Gandy and C. E.M. Yates (eds.), Logic Colloquium 69, North-Holland, Amsterdam, 1971, pp. 199–257.CrossRefGoogle Scholar
  49. Mostowski, A., Development and Applications of the ‘projective’ Classification of Sets of Integers, Proc. Intern. Congr. Math. Amsterdam, 1954, III. North-Holland, Amsterdam, 1956, pp. 280–288.Google Scholar
  50. Muchnik, A. A., ‘Negative Answers to the Problem of Reductibility of the Theory of Algorithms’, (In Russian.) Dokl Adad. Nauk SSSR 108 (1956), 194–197.Google Scholar
  51. Novikov, P. S., ‘On the Algorithmic Unsolvability of the Word Problem in Group Theory’, (Orig. Russ.) Am. Math. Soc. Transl. 9 (1958), 122 pp. (Original 1955.)Google Scholar
  52. Péter, R., Recursive Functions, Academic Press, New York, 1967. 300 pp.Google Scholar
  53. Péter, R., Rekursive Funktionen in der Komputer-Theorie, Akadémiai Kiadó, Budapest, 1976, 190 pp.Google Scholar
  54. Post, E. L., ‘Finite Combinatorial Processes. Formulation I’,/. Symbolic Logic 1 (1936), 103-105. (Reprinted in Davis, 1965.)Google Scholar
  55. Post, E. L., ‘Absolutely Unsolvable Problems and Relatively Undecidable Propositions’, Account of an anticipation, 1941. (First published in Davis, 1965.)Google Scholar
  56. Post, E. L., ‘Formal Reductions of the General Combinatorial Decision Problem’, Am. J. Math. 65 (1943), 197–215.CrossRefGoogle Scholar
  57. Post, E. L., ‘Recursively Enumerable Sets of Positive Integers and Their Decision Problems’, Bull. Am. Math. Soc. 50 (1944), 284–316 (Reprinted in Davis, 1965.)Google Scholar
  58. Post, E. L., ‘Recursive Unsolvability of a Problem of Thue’, J. Symbolic Logic 12 (1947), 1–11. (Reprinted in Davis, 1965.)Google Scholar
  59. Rabin, M. O., ‘Computable Algebra, General Theory and Theory of Computable Fields’, Trans. Am. Math. Soc. 95 (1960), 341–360.Google Scholar
  60. Robinson, R. M., ‘Undecidability and Nonperiodicity for Tilings of the Plane’, InventionesMath. 12 (1971), 177–209.CrossRefGoogle Scholar
  61. Rogers, Jr., H., Theory of Recursive Functions and Effective Computability, McGraw- Hill, New York, 1967, 501 pp.Google Scholar
  62. Rosser, J. B., ‘Extensions of Some Theorems of Gödel and Church’, J. Symbolic Logic 1 (1936), 87–91 (Reprinted in Davis, 1965.)Google Scholar
  63. Sacks, G. E., Degrees of Unsolvability, Univ. Press, Princeton, N.J., 1963, 180 pp.Google Scholar
  64. Sasso, Jr., J. P., ‘A Survey of Partial Degrees’, J. Symbolic Logic 40 (1975), 130–140.CrossRefGoogle Scholar
  65. Schnorr, C. P., Rekursive Funktionen und ihre Komplexität, Teubner, Stuttgart, 1974, 191 pp.Google Scholar
  66. Schoenfield, J. R., Degrees of Unsolvability, North-Holland, Amsterdam. 1971, 117 pp.Google Scholar
  67. Skordev, D., ‘Berechenbare und μ-rekursive Operatoren’, Bulgarska Akad. na Naukite Izvestija, Mat. Inst., Sofija 7 (1963), 5–43. (Bulg., with Russ. and German summary.)Google Scholar
  68. Specker, E. and Strassen, V. (ed.), Komplexität von Entscheidungsproblemen, Springer, Heidelberg, 1976, 217 pp.Google Scholar
  69. Strong, H., ‘Algebraically Generalized Recursive Function Theory’, IBM J. Research and Development 12 (1968), 465–475. (With a Bibliography.)Google Scholar
  70. Surányi, J., Reduktionstheorie des Entscheidungsproblems im Prädikatenkalkül der ersten Stufe, Ungar. Akad. der Wiss., Budapest, 1959, 216 pp.Google Scholar
  71. Thue, A., ‘Probleme der Veränderung von Zeichenreihen nach gegebenen Regeln’, Vid. Skrifter I. Mat.-Naturv. Klasse 10 (1914), 34 pp.Google Scholar
  72. Troelstra, A. S., ‘Metamathematical Investigations of Intuitionistic Arithmetic and Analysis’, Lecture Notes No. 344, Springer, Heidelberg, 1973, 502 pp.CrossRefGoogle Scholar
  73. Turing, A. M., ‘On Computable Numbers, with an Application to the Entscheidungs-problem’, Proc. London Math. Soc. (2) 42 (1936), 230–265. Corr. ibid. 43 (1937), 544–546. (Reprinted in Davis, 1965; compare the Appendix of Post, 1947.)CrossRefGoogle Scholar
  74. Turing, A. M., ‘Systems of Logic Based on Ordinals’, Proc. London Math. Soc. (2) 45 (1939), 161–228. (Reprinted in Davis, 1965.)CrossRefGoogle Scholar
  75. Wagner, E. G., ‘Uniform Reflexive Structures: On the Nature of Gödelizations and Relative Computability’, Trans. Am. Math. Soc. 144 (1969), 1–41.Google Scholar
  76. Wang, H., ‘Proving Theorems by Pattern Recognition II’ Bell Systems Technical Journal 40 (1961), 1–41.Google Scholar
  77. Wang, H.: ‘Remarks on Machines, Sets and the Decision Problem’, in J. N. Crossley and M. A. Dummett (eds.), Formal Systems and Recursive Functions, North-Holland, Amsterdam, 1965, pp. 304–319. (With a Bibliography.)Google Scholar
  78. Fenstad J.E., General Recursion Theory, Springer, Heidelberg, 1980,225 pp.Google Scholar

Copyright information

© D. Reidel Publishing Company 1981

Authors and Affiliations

  • Hans Hermes
    • 1
  1. 1.University of FreiburgGermany

Personalised recommendations