Testing of Ligands

  • Jean-Pierre Sauvage
Part of the NATO Advance Study Institutes Series book series (ASIC, volume 55)


Molecular receptors, whose design and synthesis have been discussed in the preceding paper, are organic structures, held by covalent bonds, which are able to bind selectively substrates by the use of intermolecular interactions. These molecular interactions are of various origins: electrostatic interactions, hydrogen bonding, Van der Waals forces, etc.. The design of the receptor determines which substrate is to be bound, the energy and the specificity of complexation being governed by geometrical factors (topology of the ligand, size and shape of the internal cavity and of the substrate,. . .) and by the nature of the intermolecular interactions (electrostatic interactions for the binding of cations, presence of suitable donor binding sites for the complexation of transition metal cations, introduction of hydrogen bonds for the binding of anionic species, etc. . . .). The strength of the ligand-substrate interaction can be characterised by different physical constants. Thermodynamic (stability constants, enthalpy and entropy of formation of complexes), and kinetic parameters, are of prime importance in the definition of the properties of the ligand-substrate complex, for the understanding of the nature of the stabilising ligand-substrate interactions and in the design of new ligands.


Stability Constant Transition Metal Cation Metallic Cation Molecular Cavity Good Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Metz,B., Moras, D., and Weiss, R: 1971, Chem. Comm.,p.- 444 and references cited therein.Google Scholar
  2. (2).
    Dietrich, B., Lehn, J. M., and Sauvage, J. P.: 1973, Tetrahedron 29, p. 1647.CrossRefGoogle Scholar
  3. (3).
    Lehn, J. M., and Sauvage, J. P.: 1975, J. Am. Chem. Soc. 97 p. 6700.CrossRefGoogle Scholar
  4. (4).
    Dietrich, B., Lehn, J. M., and Sauvage, J. P.: 1973, Chem. Comm.,p. 15.Google Scholar
  5. (5).
    Lehn, J.M. and Montavon, F.: 1978, Hell). Chim. Acta 61, p. 67.CrossRefGoogle Scholar
  6. (6).
    Dietrich, B., Lehn, J.M., and Sauvage, J. P.: 1970, Chem. Comm., p. 1055.Google Scholar
  7. (7).
    Lehn, J. M., Sauvage, J.P., and Dietrich, B.: 1970, J. Am. Chem. Soc. 92, p. 2916.CrossRefGoogle Scholar
  8. (8).
    Lehn, J. M., Pine, S.H., Watanabe, E. I., and Willard, A.K.: 1977, J. Am. Chem. Soc. 99, p. 6766.CrossRefGoogle Scholar
  9. (9).
    Lehn, J. M. and Simon, J.: 1977, Hell). Chico. Acta 60, p. 141.CrossRefGoogle Scholar
  10. (10).
    Alberts, A.H., Annunziata, R., and Lehn, J.M.: 1977, J. Am. Chem. Soc. 99, p. 8502.CrossRefGoogle Scholar
  11. (11).
    Louis, R. and Weiss, R., private communication.Google Scholar
  12. (12).
    Graf, E. and Lehn, J.M.: 1975, J. Am. Chem. Soc. 97, p. 5022.CrossRefGoogle Scholar
  13. (13).
    Graf, E. and Lehn, J.M.: 1976, J. Am. Chem. Soc. 98, p. 6403.CrossRefGoogle Scholar
  14. (14).
    Lehn, J.M., Sonveaux, E., and Willard, A.K.: 1978, J. Am. Chem. Soc. 100, p. 4914.CrossRefGoogle Scholar
  15. (15).
    Dietrich, B., Fyles, T., Lehn, J.M., Pease, L.G., and Fyles, D.L.: 1978, Chem. Comm., p.934.Google Scholar

Copyright information

© D. Reidel Publishing Company 1980

Authors and Affiliations

  • Jean-Pierre Sauvage
    • 1
  1. 1.Institut Le BelUniversité Louis PasteurStrasbourgFrance

Personalised recommendations