Skip to main content

Some Recent Advances in the use of Propagator Methods in Quantum Chemistry. From AMO to AGP

  • Conference paper
Horizons of Quantum Chemistry

Abstract

A survey of recent developments in the use of propagator methods in quantum chemistry is made. Particular emphasis is devoted to balanced approximations of both states and operators in order to get a consistent description of both static and dynamic properties. A systematic procedure provides, in particular, an alternative derivation of a significant result by Linderberg and Öhrn: the antisymmetrized geminal power wave function (AGP): ΨAGP = NAg(1,2)g(3,4)…g(N-1,N) is the correct ground state of the self-consistent particle-hole propagator (SCPHP) (N is a normalization constant, A an antisymmetrizer and g an antisymmetric, normalized geminal). This AGP function was previously dismissed as a reasonable approximation on account of the limited amount of correlation energy it seemed to yield or because its inability to lead to proper dissociation. It is shown that on the contrary, provided no restrictions on the geminal are made, it contains as particular cases the different orbitals for different spins (DODS) scheme and the alternant molecular orbital method (AMO) of Löwdin - both capable of high accuracy. It is argued that the current theories of chemical reactions can have the AGP function as an optimal framework, with AMO as the simplest level of formalization of the methods of Bader, Fukui, Pearson, Woodward and Hoffman. It encompasses also the more advanced level proposed by Ruedenberg in terms of orbital reaction space and natural reaction orbitals. Some consequences of the AGP function being the ground state of the SCPHP are: the excitation spectrum is easily obtainable; the excited states are obtained by “one-electron excitation operators”; the validity of the Hellman-Feynman theorem which leads to a simple description of the response to external perturbations.

Essential to the previous aspects is the non-singlet character of the geminal. This “broken symmetry” allows the inclusion of a major part of the correlation energy. At the orbital level and the Hartree-Fock (HF) self-consistent (SCF) level of approximation these low-symmetry orbitals provide reasonable transition energies and probabilities in core-holem ionization as well as in n-п* transitions through the use of orbitals adapted to the excitation process: transition orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Öhrn, in The New World of Quantum Chemistry, Proceedings from the 2nd International Congress of Quantum Chemistry (B. Pullman and R. Parr, Eds., D. Reidel, Boston, 1976) pp. 57.

    Google Scholar 

  2. J. Linderberg and Y. öhrn, Propagators in Quantum Chemistry (Academic Press, London, 1973)

    Google Scholar 

  3. P. Jørgensen, Ann. Review of Physical Chem. 26, 359 (1975).

    Article  Google Scholar 

  4. J. Oddershede, Advances in Quantum Chem. 11, 275 (1978).

    Article  CAS  Google Scholar 

  5. L.S. Cederbaum and W. Domcke, Advances in Chemical Phys. 36, 205 (1977).

    Article  CAS  Google Scholar 

  6. W. von Niessen, L.S. Cederbaum and W. Domcke in Excited States in Quantum Chemistry (C. Nicolaides and D.R. Beck, Eds., D. Reidel, Dordrecht, 1979) pp. 183.

    Google Scholar 

  7. Y. Öhrn in Excited States in Quantum Chemistry (C. Nicolaides and D.R. Beck, Eds., D. Reidel, Dordrecht, 1979) pp. 317.

    Google Scholar 

  8. C.W. McCurdy, T.N. Rescigno, D.L. Yeager and W. McKoy in Modern Theoretical Chemistry (H.F. Schaefer III, Ed., Plenum Press, New York, 1977) PP. 349.

    Google Scholar 

  9. M.F. Herman, D.L. Yeager and K.F. Freed, Chem. Phys. 29, 77 (1978);

    Article  CAS  Google Scholar 

  10. D.L. Yeager and K.F. Freed, Chem. Phys. 22, 415 (1977).

    Article  CAS  Google Scholar 

  11. For a recent discussion see proceedings of the Nobel Symposium 46, Many Body of Atomic Systems, Edited by I. Llndgren and S. Lundqvist, Physica Scripta (to appear).

    Google Scholar 

  12. C.A. Coulson in Proceedings of Int. Conference of Theoretical Physics (Kyoto and Tokyo 1953, Science Council of Japan Pubi., UenoPark, Tokyo, 1954).

    Google Scholar 

  13. B. Roos and P.E.M. Siegbahn inModern Theoretical Chemistry 3: Methods of Electronic Structure Theory (H.F. Schaefer, III Ed., Plenum Press, New York, 1977)

    Google Scholar 

  14. F. Grein and T.C. Chang, Chem. Phys. Lett. 12, 44 (1971);

    Article  CAS  Google Scholar 

  15. A. Bannerjee and F. Grein, Int. J. Quantum Chem. 10, 123 (1976).

    Article  Google Scholar 

  16. P. Siegbahn, A. Heiberg, B. Roos and B. Levy, Physica Scripta 00,000 (1980).

    Google Scholar 

  17. This is a vast subject, going back to Weyl, Gelfand-Zhitlin and Moshinsky. For references and recent work see J. Paldus in Theoretical Chemistry: Advances and Perspectives (H. Eyring and D.J. Henderson, Eds., Academic Press, New York, 1976) Vol. 2, pp. 31;

    Google Scholar 

  18. I. Shavitt, Int. J. Quantum Chem. Symp. 11, 131 (1977); ibid, Symp. 12, 5 (1978).

    Google Scholar 

  19. J.C. Slater, Phys. Rev. 35., 509 (1930); Proc. Shelter Island Conf. on Quantum Mechanical Methods in Valence Theory (1951) pp. 121.

    Article  CAS  Google Scholar 

  20. P.O. Löwdin, Proceedings of the Nikko Symposium on Molecular Physics (M. Kotani et al., Eds., Maruzen Co., Tokyo, 1954) pp. 13.

    Google Scholar 

  21. C.A. Coulson and I. Fischer(-Hjalmars), Phil. Mag. 40, 386 (1949).

    CAS  Google Scholar 

  22. T. Itoh and H. Yoshizumi, J. Phys. Soc. Japan 10, 201 (1955); J. Chem. Phys. 23, 412 (1955).

    Article  Google Scholar 

  23. Many aspects of the AM0 method are aptly discussed by R. Pauncz in Alternant Molecular Orbital Method (W.B. Saunders Co., Philadelphia, 1967), where an extensive bibliography is also given.

    Google Scholar 

  24. See e.g. D.J. Thouless, The Quantum Mechanics of Many Body Systems (Academic Press, New York, 1961).

    Google Scholar 

  25. P.O. Löwdin, J. Phys. Chem. 61, 55 (1957).

    Article  Google Scholar 

  26. A.J. Coleman, Rev. Mod. Phys. 35., 668 (1963).

    Article  Google Scholar 

  27. U. J. Linderberg and Y. Öhrn, Int. J. Quantum Chem. 12, 161 (1977).

    Article  Google Scholar 

  28. Y. Öhrn and J. Linderberg, Int. J. Quantum Chem. 15, 343 (1979).

    Article  Google Scholar 

  29. H. Fukutome, M. Yamamura and S. Nishiyama, Progr. Theoret. Phys. 57, 1554 (1977);

    Article  CAS  Google Scholar 

  30. H. Fukutome, Progr. Theoret. Phys. 58, 1692 (1977).

    Article  CAS  Google Scholar 

  31. O. Goscinski and B. Lukman, Chem. Phys. Letters 7, 573 (1970).

    Google Scholar 

  32. B.T. Pickup and O. Goscinski, Mol. Phys. 26, 1013 (1973).

    Article  CAS  Google Scholar 

  33. B.T. Pickup and O. Goscinski, Chem. Phys. Letters 33, 265 (1975).

    Article  Google Scholar 

  34. B. Weiner and O. Goscinski, Int. J. Quantum Chem. 12, 299 (1977).

    Google Scholar 

  35. O. Goscinski and B. Weiner, Physica Scripta 00, 000 (1980).

    Google Scholar 

  36. B. Weiner and O. Goscinski, The Self-Consistent Approximation to the Polarisation Propagator, submitted to the Int. J. Quantum Chem.

    Google Scholar 

  37. B. Weiner and O. Goscinski, Calculation of Optimal Antisymmetrized Power (projected-BCS) Functions and their Associated Excitation Spectrum, to be submitted to the Phys. Rev.

    Google Scholar 

  38. L. Bardeen, L.M. Cooper and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  CAS  Google Scholar 

  39. J.M. Blatt, Theory of Superconductivity (Academic Press Inc., New York, 1964).

    Google Scholar 

  40. A.J. Coleman, J. Math. Phys. 6, 1425 (1965).

    Article  Google Scholar 

  41. J.R. Schrieffer, Theory of Superconductivity (W.A. Benjamin, Ed., New York, 1964).

    Google Scholar 

  42. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).

    Article  CAS  Google Scholar 

  43. S. Bratoz and Ph. Durand, J. Chem. Phys. 43, 2670 (1965).

    Article  CAS  Google Scholar 

  44. G. Bessis, C. Murez and S. Bratoz, Int. J. Quantum Chem. 1, 327 (1967).

    Article  CAS  Google Scholar 

  45. G. Bessis, P. Espagnet and S. Bratoz, Int. J. Quantum Chem. 3., 205 (1969).

    Article  CAS  Google Scholar 

  46. W. Kutzelnigg, J. Chem. Phys. 40, 364O (1964)

    Article  Google Scholar 

  47. R.E. Watson, Phys. Rev. 119, 170 (1960).

    Google Scholar 

  48. W. Kutzelnigg, Theoret. Chim. Acta (Berl.) 3, 24 1 (1965) •

    Article  CAS  Google Scholar 

  49. J. Linderberg, Israel J. of Chemistry 00, 000 (1980).

    Google Scholar 

  50. P.O. Löwdin, Phys. Rev. 139, 357 (1965).

    Article  Google Scholar 

  51. M. Rosina, in Queen’s Papers in Pure and Applied Math. No.4O,Kingston, Ontario, Canada (1974)

    Google Scholar 

  52. J. Linderberg, Physica Scripta 00, 000 (1980).

    Google Scholar 

  53. T.A. Koopmans, Physica 1, 104 (1933).

    Article  CAS  Google Scholar 

  54. R.S. Mulliken, J. Chem. Phys. 46, 497 (1949) •

    CAS  Google Scholar 

  55. P.S. Bagus, Phys. Rev. 139, 619(1965).

    Article  CAS  Google Scholar 

  56. As an example, rather than an extensive bibliography see: Excited States in Quantum Chemistry (C.A. Nicolaides and D.R. Beck, Eds., D. Reidel, Dordrecht, 1979).

    Google Scholar 

  57. A.D. McLachlan and M.A. Ball, Rev. Mod. Phys. 36, 844 (1964) and references therein.

    Article  CAS  Google Scholar 

  58. J. Linderberg, Arkiv f. Fysik 26, 232 (1964).

    Google Scholar 

  59. P. Lindner and O. Goscinski, Int. J. Quantum Chem. 4S, 251 (1951) -

    Google Scholar 

  60. A. Calles and O. Goscinski, The Use of Green Functions for the Caldilations of the Dynamic Jahn-Teller Effect, preprint.

    Google Scholar 

  61. P.O. Löwdin, Int. J. Quantum Chem. 2, 867 (1968).

    Article  Google Scholar 

  62. E. Dalgaard, Int. J. Quantum Chem. 15, 197 (1979);

    Article  Google Scholar 

  63. E. Dalgaard and P. JØrgensen, J. Chem. Phys.69, 3833 (1978);

    Article  CAS  Google Scholar 

  64. R. Manne, Chem. Phys Letters 45, 470 (1977).

    Article  CAS  Google Scholar 

  65. C. Nehrkorn, G. Purvis, Y. Öhrn, J. Chem. Phys. 64, 1752 (1978).

    Article  Google Scholar 

  66. R. Pauncz, J. de Heer and P.O. Löwdin, J. Chem. Phys. 36, 2247, 2257 (1962).

    Article  CAS  Google Scholar 

  67. O. Goscinski and J-L Calais, Arkiv Fysik 29, 135 (1965).

    Google Scholar 

  68. E. Kapuy, Theoret. Chim. Acta 3., 379 (1965).

    Article  Google Scholar 

  69.  See also I. Mayer, Acta Physica Acad. Scient. Hungarical, T37, 39 (1974; ibid, T34, 305 (1973).

    Article  Google Scholar 

  70. K.F. Berggren and B. Johansson, Int. J. Quantum Chem. 2, 483 (1968).

    Article  CAS  Google Scholar 

  71.  See also Physica 40, 277 (1968).

    Google Scholar 

  72. J-L Calais, Ann. Soc. Scient. Bruxelles T93, 000 (1979).

    Google Scholar 

  73. See also Mott and Peierls Gaps, TN 603, Uppsala Quantum Chemistry Group, 1979, and references therein.

    Google Scholar 

  74. A.A. Ovchinnikov, J.J. Ukrainskii and G.V. Kventsel, Soviet Phys. Uspekhi 15, 575 (1973).

    Article  Google Scholar 

  75. B. Johansson and K.F. Berggren, Phys. Rev. 181, 855 (1969).

    Article  Google Scholar 

  76. F. Sasaki, Phys. Rev. 138, B1338 (1965);

    Article  Google Scholar 

  77. C.N. Yang, Rev. Mod. Phys. 35., 668 (1963);

    Article  Google Scholar 

  78. A.J. Coleman, Int. J. Quantum Chem. 13, 67 (1978).

    Article  CAS  Google Scholar 

  79. B. Weiner and O. Goscinski, to be published.

    Google Scholar 

  80. K.H. Johnson, D.D. Vvedensky and R.P. Messmer, Molecular Orbitals and Superconductivity (preprint).

    Google Scholar 

  81. Consider the review by K. Fukui, Int. J. Quantum Chem. 12, Suppl. 1, 277 (1977) and references therein as an example.

    Google Scholar 

  82. E. A. Halevi, Int. J. Quantum Chem. 12, Suppl. 1, 289 (1977).

    Google Scholar 

  83. R.B. Woodward and R. Hoffmann, J. Am. Chem. Soc. 87, 395 (1965)

    Article  CAS  Google Scholar 

  84. H.C. Longuet-Higgins and E.W. Abrahamson, J. Am. Chem. Soc. 87 2045 (1965).

    Google Scholar 

  85. E.B. Wilson and P.S.C. Wang, Chem. Phys. Letters 15, 400 (1972).

    Article  CAS  Google Scholar 

  86. E.R. Davidson, Reduced Density Matrices in Quantum Chemistry (Academic Press, New York, 1976).

    Google Scholar 

  87. K. Ruedenberg and K.R. Sundberg inQuantum Science (J-L Calais et al., Eds., Plenum Press, New York, 1976) pp. 505.

    Google Scholar 

  88. An interesting series of papers relating chemical reactivity with HF instabilities and broken symmetry solutions: H. Fukutome and coworkers, Prog. Theoret. Phys. 47, 1156 (1972);49, 22 (1973); 50, 1433 (1973); 52, 1580 (1975); 54, 1599 (1975).

    Article  CAS  Google Scholar 

  89. P.O. Löwdin, Rev. Mod. Phys. 35, 496 (1963).

    Article  Google Scholar 

  90. P.S. Bagus and H.F. Schaeffer III, J. Chem. Phys. 56, 224 (1972).

    Article  CAS  Google Scholar 

  91. H.T. Jonkman, G. Van der Velde and W.C. Nieuwpoort, SRC Atlas Symposium No. 4 Oxford (1974).

    Google Scholar 

  92. L.E. Nitzsche and E.R. Davidson, Chem. Phys. Letters 58, 171 (1978).

    Article  CAS  Google Scholar 

  93. C.P. Keijzers, P.S. Bagus and J.P. Worth, J. Chem. Phys. 69, 4032 (1978).

    Article  CAS  Google Scholar 

  94. S. Canuto, O. Goscinski and M. Zerner, Chem. Phys. Letters 00, 000 (1979).

    Google Scholar 

  95. J. Müller, E. Poulain and L. Karlsson, J. Chem. Phys. 00, 000 (1980).

    Google Scholar 

  96. R.L. Lozes, O. Goscinski and U.I. Wahlgren, Chem. Phys. Letters 63, 77 (1979).

    Article  CAS  Google Scholar 

  97. S. Canuto and O. Goscinski, Uppsala Quantum Chemistry Group, TN 599 (1979).

    Google Scholar 

  98. J. Müller, H. Âgren and O. Goscinski, Chem. Phys. 38, 349 (1979) and references therein to work by Clark and collaborators.

    Article  Google Scholar 

  99. O. Goscinski and A. Palma, Chem. Phys. Letters 47, 322 (1977)

    Article  CAS  Google Scholar 

  100. A. Palma et al., Chem Phys. Letters 62, 368 (1979).

    Google Scholar 

  101. R.J. Bartlett and G.D. Purvis, Physica Scripta 00, 000 (1980).

    Google Scholar 

  102. A. Pullman in Aspects de la Chimie Quantique Contémporaine, Colloques Int. du CNRS 195 (Editions du CNRS, Paris 1970) pp. 9.

    Google Scholar 

  103. F.A. Matsen, Int. J. Quantum Chem. 10, 525 (1976); Adv. Quantum Chem. 11, 223 (1978).

    Article  CAS  Google Scholar 

  104. M. Moshinsky and T.H. Seligman, Ann. Phys. 66, 311 (1971).

    Google Scholar 

  105. C.R. Sarma and K.V. Dinesha, Int. J. Quantum Chem. 15, 579 (1979).

    Article  CAS  Google Scholar 

  106. J.E. Harriman, Int. J. Quantum Chem. 15, 611 (1979).

    Article  CAS  Google Scholar 

  107. H. Shull, J. Chem. Phys. 30, I405 (1957);

    Google Scholar 

  108. R. McWeeny and Y. Mizuno, Proc. Roy. Soc. (London) A259, 554 (1961).

    Google Scholar 

  109. M.A. Ratner, Int. J. Quantum Chem.5, 675 (1978).

    Article  Google Scholar 

  110. L.S. Cederbaum, J. Schirmer, W. Domcke and W. von Niessen, Int. J. Quantum Chem. 14, 593 (1978).

    Article  CAS  Google Scholar 

  111. G. Born and Y. Öhrn, Chem. Phys. Letters 61, 307 (1979).

    Article  Google Scholar 

  112. H.A. Kurtz and Y. Öhrn, J. Chem. Phys. 69, 1162 (1978).

    Article  CAS  Google Scholar 

  113. V.G. Neudatchin et al., Phys. Lett. 64A, 31 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 D. Reidel Publishing Company

About this paper

Cite this paper

Goscinski, O. (1980). Some Recent Advances in the use of Propagator Methods in Quantum Chemistry. From AMO to AGP. In: Fukui, K., Pullman, B. (eds) Horizons of Quantum Chemistry. Académie Internationale Des Sciences Moléculaires Quantiques / International Academy of Quantum Molecular Science, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9027-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9027-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9029-6

  • Online ISBN: 978-94-009-9027-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics