Advertisement

Some Properties of Functional Invariant Sets for Navier-Stokes Equations

  • R. Temam
Conference paper
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 54)

Abstract

Our aim in this article is to describe a few properties of
  • the set of stationary solutions to the Navier-Stokes equations for a viscous incompressible fluid in a bounded domain Ωof ℝn, n=2 or 3,

  • any functional invariant set for the time-dependent Navier- Stokes equations, under the same conditions, the dimension of space being n=2.

Keywords

Periodic Solution Stationary Solution Bounded Domain Unbounded Operator Viscous Incompressible Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C.Foias, R.Temam, Structure of the set of Stationary solutions of the Navier-Stokes equations, Comm. Pure Appl.Math. Vol.XXX (1977) p. 149–164.CrossRefGoogle Scholar
  2. [2]
    C.Foias, R.Temam,Remarques sur les equations de Navier- Stokes stationnaires et les phénoménes successifs de bifurcation,Annali Scuola Norm.Sup.di Pisa, Serie IV, Vol.5 (1978) p.29–63 et volume dédi a J.Leray.Google Scholar
  3. [3]
    C.Foias, R.Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J.Math.Pures Appl., 58 (1979) p. 339–368.Google Scholar
  4. [4]
    J.L.Lions, Queles méthods de résolution des problèmes aux limites non linéalres, Dunod-Gauthier-Villars, Paris 1969.Google Scholar
  5. [5]
    J.C.Saut, R.Temam, Genetic properties of nonlinear boundary value problems, Communications in P.D.E., vol.4 n°3, 1979, p. 293–319.CrossRefGoogle Scholar
  6. [6]
    J.C.Saut, R.Temam, Generic properties of Navier-Stokes equations: genericity with respect to the boundary values,Indiana Math.Journal, to appear.Google Scholar
  7. [7]
    R.Temam, Une proprleté générique de l’ensemble des solutions stationnaires ou périodiques des équations de Navler-Stokes,Symposium Franco-Japonais, Septembre 1976, à paraître.Google Scholar
  8. [8]
    R.Temam,Navler-Stokes equations, theory and numerical analysis,North-Holland, Amsterdam 1977, second edition 1979.Google Scholar

Copyright information

© D. Reidel Publishing Company 1980

Authors and Affiliations

  • R. Temam
    • 1
  1. 1.Departement de MathématiquesUniversité Paris-SudOrsayFrance

Personalised recommendations