Euclidean Yang-Mills and Related Equations

  • Basilis Gidas
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 54)

Abstract

By a generally accepted philosphy, the basic constituents of hadrons (protons, neutrons, mesons, etc.) are quarks. But quarks have never been directly confirmed by experiment because they have never been isolated. The proposition has been that quarks are permanently confined inside hadrons and cannot be liberated in high energy particle collisions. It is expected that pairs (and some triplets) of quarks are attracted by forces which increase linearly with the distance between quarks. Thus when the quarks are near to each other they behave like free particles (“asymptotic freedom”), while when they are separated their attractive forces keep them together in the form of a bound state. According to this philosophy, we observe only these bound states (i.e. protons, neutrons, mesons, etc.)

Keywords

Manifold Soliton Lawson 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.M. Polyakov, Phys. Lett. B59, 82 (1975).Google Scholar
  2. 2.
    A.A. Belavin et al., Phys. Lett. B59, 85 (1975).Google Scholar
  3. 3.
    V. de Alfaro, S. Fubini, and G. Furlan, Phys. Lett. B65, 1963 (1976).Google Scholar
  4. 4.
    R. Jackiew, C. Nohl, C. Rebbi, Phys. Rev. D15, 1642 (1977).Google Scholar
  5. 5.
    T. Glimm and A. Jaffe, Phys. Lett. B73, 167 (1978).Google Scholar
  6. 6.
    T. Jonsson, O. McBryan, F. Zirilli, and J. Hubbard, Commun. Math. Phys. (1979).Google Scholar
  7. 7.
    G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976).CrossRefGoogle Scholar
  8. 8.
    C. Callan, R. Dashen, and D. Gross, Phys. Lett. B65, 354 (1976).Google Scholar
  9. 9.
    G. ’t Hooft, Phys. Rev. D14, 3432 (1976).CrossRefGoogle Scholar
  10. 10.
    M.F. Atiyah, N.J. Hitchin, and I.M. Singer, “Self-duality in four-dimensional Riemannian Geometry,” Proc. Roy. Soc. London, Ser. A, 362 (1978) 425–461.CrossRefGoogle Scholar
  11. 11.
    C. Callan, R. Dashen, and D. Gross, Phys. Rev. D.Google Scholar
  12. 12.
    J. Glimm and A. Jaffe, Phys. Rev. D18 (1978) 463.Google Scholar
  13. 13.
    C. Loewner and L. Nirenberg, “Partial Differential Equations Invariant under Conformal and Projective Transformations,” Contributions to Analysis, Academic Press (1974), pp. 245–272.Google Scholar
  14. 14.
    K. Uhlenbeck, “Removable Singularities in Yang-Mills Fields,” Bull. Am. Math. Soc. 1 (1979) 579–581, and preprint.Google Scholar
  15. 15.
    J.P. Bourgiugnon, H.B. Lawson, and J. Simons, “Stability and Gap Phenomena for Yang-Mills Fields,” Proc. Nat. Acad. Sci. USA. (to appear).Google Scholar
  16. 16.
    A. Schwarz, Phys. Lett. 3 167, 172–174 (1977).Google Scholar
  17. 17.
    R. Hartshorne, Commun. Math. Phys. 59 (1978) 1–15.Google Scholar
  18. 18.
    V. Drinfeld and Yu Manin, Funct. Anal, i Prilozhen. 12:2 (1978) 81; Uspehi Math. Nauk 33: 3 (1978) 241.Google Scholar
  19. 19.
    M. Atiyah, N. Hitchin, V. Drinfeld, and Yu Manin, Phys. Lett. 65A (1978) 185.CrossRefGoogle Scholar
  20. 20.
    G. ’t Hooft, “On the Phase Transition Towards Permanent Quark Confinement,” Nucl. Phys. B138 (1978) 1, and “A Property of Electric and Magnetic Flux in non-Abelian Gauge Theories,” preprint (1979).Google Scholar
  21. 21.
    R.H. Fowler, Quart. J. Math. 2 (1931) 259–288.CrossRefGoogle Scholar
  22. 22.
    J. Cervero, L. Jacobs, and C. Nohl, Phys. Lett. 69B (1977) 351.Google Scholar
  23. 23.
    M. Obata, J. Diff. Geom. 6 (1971) 247–258.Google Scholar
  24. 24.
    B. Gidas, W.M. Ni, and L. NirenbergGoogle Scholar
  25. 25.
    C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, N.Y. (1966).Google Scholar

Copyright information

© D. Reidel Publishing Company 1980

Authors and Affiliations

  • Basilis Gidas
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityUSA

Personalised recommendations