Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 54))

Abstract

By a generally accepted philosphy, the basic constituents of hadrons (protons, neutrons, mesons, etc.) are quarks. But quarks have never been directly confirmed by experiment because they have never been isolated. The proposition has been that quarks are permanently confined inside hadrons and cannot be liberated in high energy particle collisions. It is expected that pairs (and some triplets) of quarks are attracted by forces which increase linearly with the distance between quarks. Thus when the quarks are near to each other they behave like free particles (“asymptotic freedom”), while when they are separated their attractive forces keep them together in the form of a bound state. According to this philosophy, we observe only these bound states (i.e. protons, neutrons, mesons, etc.)

Lectures given at Institut d’Études Scientifiques de Cargèse, on “Bifurcation Phenomena in Mathematical Physics and Related Topics” (June 24 – July 7, 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.M. Polyakov, Phys. Lett. B59, 82 (1975).

    Google Scholar 

  2. A.A. Belavin et al., Phys. Lett. B59, 85 (1975).

    Google Scholar 

  3. V. de Alfaro, S. Fubini, and G. Furlan, Phys. Lett. B65, 1963 (1976).

    Google Scholar 

  4. R. Jackiew, C. Nohl, C. Rebbi, Phys. Rev. D15, 1642 (1977).

    Google Scholar 

  5. T. Glimm and A. Jaffe, Phys. Lett. B73, 167 (1978).

    Google Scholar 

  6. T. Jonsson, O. McBryan, F. Zirilli, and J. Hubbard, Commun. Math. Phys. (1979).

    Google Scholar 

  7. G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976).

    Article  Google Scholar 

  8. C. Callan, R. Dashen, and D. Gross, Phys. Lett. B65, 354 (1976).

    Google Scholar 

  9. G. ’t Hooft, Phys. Rev. D14, 3432 (1976).

    Article  Google Scholar 

  10. M.F. Atiyah, N.J. Hitchin, and I.M. Singer, “Self-duality in four-dimensional Riemannian Geometry,” Proc. Roy. Soc. London, Ser. A, 362 (1978) 425–461.

    Article  Google Scholar 

  11. C. Callan, R. Dashen, and D. Gross, Phys. Rev. D.

    Google Scholar 

  12. J. Glimm and A. Jaffe, Phys. Rev. D18 (1978) 463.

    CAS  Google Scholar 

  13. C. Loewner and L. Nirenberg, “Partial Differential Equations Invariant under Conformal and Projective Transformations,” Contributions to Analysis, Academic Press (1974), pp. 245–272.

    Google Scholar 

  14. K. Uhlenbeck, “Removable Singularities in Yang-Mills Fields,” Bull. Am. Math. Soc. 1 (1979) 579–581, and preprint.

    Google Scholar 

  15. J.P. Bourgiugnon, H.B. Lawson, and J. Simons, “Stability and Gap Phenomena for Yang-Mills Fields,” Proc. Nat. Acad. Sci. USA. (to appear).

    Google Scholar 

  16. A. Schwarz, Phys. Lett. 3 167, 172–174 (1977).

    Google Scholar 

  17. R. Hartshorne, Commun. Math. Phys. 59 (1978) 1–15.

    Google Scholar 

  18. V. Drinfeld and Yu Manin, Funct. Anal, i Prilozhen. 12:2 (1978) 81; Uspehi Math. Nauk 33: 3 (1978) 241.

    Google Scholar 

  19. M. Atiyah, N. Hitchin, V. Drinfeld, and Yu Manin, Phys. Lett. 65A (1978) 185.

    Article  Google Scholar 

  20. G. ’t Hooft, “On the Phase Transition Towards Permanent Quark Confinement,” Nucl. Phys. B138 (1978) 1, and “A Property of Electric and Magnetic Flux in non-Abelian Gauge Theories,” preprint (1979).

    Google Scholar 

  21. R.H. Fowler, Quart. J. Math. 2 (1931) 259–288.

    Article  Google Scholar 

  22. J. Cervero, L. Jacobs, and C. Nohl, Phys. Lett. 69B (1977) 351.

    Google Scholar 

  23. M. Obata, J. Diff. Geom. 6 (1971) 247–258.

    Google Scholar 

  24. B. Gidas, W.M. Ni, and L. Nirenberg

    Google Scholar 

  25. C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, N.Y. (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 D. Reidel Publishing Company

About this paper

Cite this paper

Gidas, B. (1980). Euclidean Yang-Mills and Related Equations. In: Bardos, C., Bessis, D. (eds) Bifurcation Phenomena in Mathematical Physics and Related Topics. NATO Advanced Study Institutes Series, vol 54. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9004-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9004-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9006-7

  • Online ISBN: 978-94-009-9004-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics