Skip to main content

Part of the book series: Mathematical Physics and Applied Mathematics ((MPAM,volume 5))

Abstract

For any locally compact topological group G satisfying the second axiom of countability, let ℰ(G) be the set of all equivalence classes of irreducible unitary representations of G. Among the central goals of representation theory have been, first of all, to get a good understanding of the structure of ℰ(G); and secondly, once this is done, to do harmonic analysis on G by setting up isomorphisms between suitable spaces of functions and ‘distributions’ on G with the spaces of their ‘Fourier transforms’ defined on ℰ(G). In this generality we are very far from any definitive solution to these problems. However, when G is a reductive group defined over a local field, great progress has been made.

Research partially supported by National Science Foundation Grant MCS 76-05962.

In Memory of my Mother

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atiyah, M. F., and Schmid, W. ‘A geometric construction of the discrete series for semisimple Lie groups’, Inventiones Math. 42 (1977), 1–62.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Atiyah, M. F., and Schmid, W. ‘The characters of semisimple Lie groups’, Preprint.

    Google Scholar 

  3. Bargmann, W. ‘Irreducible unitary representations of the Lorentz group’, Ann. Math. 48 (1947), 568–640.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernstein, I. N., Gel’fand, I. M., and Gel’fand, S. I. ‘The structure of representations generated by a vector of highest weight’, Functional Analysis. Appl. 5 1971 ), 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernstein, I. N., Gel’fand, I. M., and Gel’fand, S. I. Differential operators on the base affine space and a study of Q-modules, Lie groups and their representations, Summer School of the Bolyai J’anos Math. Soc., edited by I. M. Gel’fand, Halsted Press, Division of John Wiley and Sons, New York, 1975, 21–64.

    Google Scholar 

  6. Borel, A. Représentations de Groupes localement compacts, Springer-Verlag Lecture notes, No. 276, Berlin, 1972.

    MATH  Google Scholar 

  7. Casselman, W. Matrix coefficients of admissible representations, to appear

    Google Scholar 

  8. Casselman, W. ‘The n-cohomology of representations with an infinitesimal character’, Comp. Math. 31 (1975), 219–227. (With Osborne, M. S.).

    MathSciNet  MATH  Google Scholar 

  9. Dixmier, J. Algèbres enveloppantes, Gauthier-Villars, Paris, 1974; English edition: Enveloping algebras, North Holland, Amsterdam, 1977.

    Google Scholar 

  10. Enright, T.J. ‘On the fundamental series of a real semisimple lie algebra, their irreducibility, resolutions and multiplicity formulae’, Ann. Math. 110 (1979), 1–82.

    Article  MathSciNet  MATH  Google Scholar 

  11. Enright, T.J. ‘On the construction and classification of irreducible Harish Chandra modules’, Proc. Natl. Acad. Sci. U.S.A., 75 (1978).

    Google Scholar 

  12. Enright, T.J. ‘Algebraic construction and classification of Harish Chandra modules’, Preprint.

    Google Scholar 

  13. Enright, T. J., and Varadarajan, V. S. ‘On an infinitesimal characterization of the discrete series’, Ann. Math., 102 (1975), 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  14. Enright, T. J., and Wallach, N. ‘The fundamental series of representations of a real semisimple Lie algebra’, to appear in Acta Mathematica.

    Google Scholar 

  15. Enright, T. J., and Wallach, N. ‘The fundamental series of semisimple Lie algebras and semisimple Lie groups’, Preprint. Fomin, A. I., and Shapovalov, N. N.

    Google Scholar 

  16. Enright, T. J., and Wallach, N. ‘A property of the characters of irreducible representations of real semisimple Lie groups’, Funkt. Anal, i Ego. Priloz. 8 (1974), 87–88; English translation: Fund. Anal. Appl, 8 (1974), 270–271.

    Google Scholar 

  17. Harish-Chandra. ‘Representations of a semisimple Lie group, I, II, III’, Trans. Amer. Math. Soc. 75 (1953), 185–243; 76 (1954), 26–75; 76 (1954), 234–253.

    Google Scholar 

  18. Harish-Chandra. ‘Representations of semisimple Lie groups, I–IV’, Proc. Natl. Acad. Sci. U.S.A., 37 (1951), 170–173; 37 (1951), 362–365; 37 (1951), 366–369; 37 (1951), 691–694.

    Google Scholar 

  19. Harish-Chandra. ‘Some results on differential equations’ (unpublished); ‘Differential equations and semisimple Lie groups’ (unpublished), Princeton, 1961.

    Google Scholar 

  20. Harish-Chandra. ‘Some results on differential equations and their applications’, Proc. Natl. Acad. Sci., U.S.A., 45 (1959), 1763–1764.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Harish-Chandra. ‘Plancherel formula for the 2 x 2 real unimodular group’, Proc. Natl. Acad. Sci., U.S.A., 38 (1952), 337–342.

    Google Scholar 

  22. Harish-Chandra. ‘Representations of semisimple Lie groups, IV’, Amer. J. Math., 77 (1955), 743–777.

    Article  MathSciNet  MATH  Google Scholar 

  23. Harish-Chandra. ‘Representations of semisimple Lie groups, V’, Amer. J. Math., 78 (1956), 1–41.

    Article  MathSciNet  MATH  Google Scholar 

  24. Harish-Chandra. ‘Representations of semisimple Lie groups, VI’. Amer. J. Math., 78 (1956), 564–628.

    Article  MathSciNet  MATH  Google Scholar 

  25. Harish-Chandra. ‘Invariant eigendistributions on a semisimple Lie group’, Trans. Amer. Math. Soc., 119 (1965), 457–508.

    Article  MathSciNet  MATH  Google Scholar 

  26. Harish-Chandra. ‘Discrete series for semisimple Lie groups, I, II’, Acta. Math. 113 (1965), 241–318; 116 (1966), 1–111.

    Google Scholar 

  27. Harish-Chandra. ‘Harmonic analysis on real reductive groups, I. The theory of the constant term’, J. Functional Analysis 19 (1975), 104–204.

    Article  MathSciNet  MATH  Google Scholar 

  28. Harish-Chandra. ‘Harmonic analysis on real reductive groups, II’, Inventiones Math. 36 (1975), 1–55.

    Article  MathSciNet  ADS  Google Scholar 

  29. Harish-Chandra. ‘Harmonic analysis on real reductive groups, III’, Ann. Math. 104 (1976), 117–201.

    Article  MathSciNet  MATH  Google Scholar 

  30. Hecht, H., and Schmid, W. ‘A proof of Blattner’s conjecture’, Inventiones Math. 31 (1975), 129–154.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Jantzen, J. C. ‘Kontravariente Formen auf induzierten Darstellungen halbeinfacher Lie-Algebran’, Math. Ann. 226 (1977), 53–65.

    Article  MathSciNet  MATH  Google Scholar 

  32. Knapp, A., and Zuckerman, G. ‘Classification of irreducible tempered representations of semisimple Lie groups’, Proc. Natl. Acad. Sci., U.S.A., 73 (1976), 2178–2180.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Knapp, A., and Zuckerman, G. ‘Classification theorems for representations of semisimple Lie groups’, Preprint.

    Google Scholar 

  34. Kostant, B. On the existence and irreducibility of certain series of representations, Lie groups and their representations, Summer School of the Bolyai J’anos Math. Soc., Edited by I. M. Gel’fand, Halsted Press, A division of John Wiley and Sons, 1975, 231–331.

    Google Scholar 

  35. Lang, S. SL(2,ℝ), Addison-Wesley, Reading, Massachusetts, 1975.

    MATH  Google Scholar 

  36. Langlands, R. P. ‘On the classification of irreducible representations of real reductive groups’, Mimeographed notes, Institute for Advanced Study, 1973.

    Google Scholar 

  37. Lepowsky, J. ‘Algebraic results on representations of semisimple Lie groups’, Trans. Amer. Math. Soc., 176 (1973), 1–44.

    Article  MathSciNet  MATH  Google Scholar 

  38. Parthasarathy, K. R., Ranga Rao, R., and Varadarajan, V. S. ‘Representations of complex semisimple Lie groups and Lie algebras’, Ann. Math., 85 (1967), 383–429.

    Article  MathSciNet  MATH  Google Scholar 

  39. Parthasarathy, R. ‘An algebraic construction of a class of representations of a semisimple Lie algebra’, Math. Ann., 226 (1977), 1–52.

    Article  MathSciNet  MATH  Google Scholar 

  40. Rossi, H., and Vergne, M. ‘Analytic continuation of the holomorphic discrete series of a semisimple Lie group’, Acta Math. 136 (1976), 1–59.

    Article  MathSciNet  MATH  Google Scholar 

  41. Schmid, W. ‘On the characters of the discrete series (the Hermitian symmetric case)’, Inventiones Math., 30 (1975), 47–144.

    Article  ADS  MATH  Google Scholar 

  42. Schmid, W. ‘On the realization of the discrete series of a semisimple Lie group’, Rice University Studies, 56 (1970), 99–108.

    MathSciNet  Google Scholar 

  43. Schmid, W. ‘Some properties of square integrable representations of semisimple Lie groups’, Ann. Math., 102 (1975), 535–564.

    Article  MATH  Google Scholar 

  44. Schmid, W. ‘On a conjecture of Langlands’, Ann. Math., 93 (1971), 1–42.

    Article  MATH  Google Scholar 

  45. Schmid, W. Lectures given at the Institute for Advanced Study, Princeton, 1976.

    Google Scholar 

  46. Trombi. P. C. ‘The tempered spectrum of a real semisimple Lie group’, Amer. J. Math., 99 (1977), 57–75.

    Article  MathSciNet  MATH  Google Scholar 

  47. Varadarajan, V. S. Harmonic analysis on real reductive groups, Springer-Verlag Lecture notes, No. 576, Springer-Verlag, New York, 1976.

    Google Scholar 

  48. Varadarajan, V. S. Lie groups, Lie algebras, and their representations, Prentice Hall, Englewood Cliffs, New Jersey, 1974.

    MATH  Google Scholar 

  49. Verma, Daya-na’d. Structure of certain induced representations of complex semisimple Lie algebras, Thesis, Yale University (1966).

    Google Scholar 

  50. Verma, Daya-na’d. ‘Structure of certain induced representations of complex semisimple Lie algebras’, Bull. Amer. Math. Soc., 74 (1968), 160–166, 628.

    Article  MathSciNet  MATH  Google Scholar 

  51. Warner, G. Harmonic analysis on semisimple Lie groups, I, II, Springer-Verlag, New York, 1972.

    Google Scholar 

  52. Wallach, N. ‘On the Enright-Varadarajan modules: A construction of the discrete series’, Ann. Ecole Norm. Sup., 9 (1976), 171–195.

    Google Scholar 

  53. Wallach, N. On the unitarizability of representations with highest weights, Springer Lecture Notes, No. 466 (1975), 226–231.

    MathSciNet  Google Scholar 

  54. Zuckerman, G. ‘Tensor products of infinite dimensional and finite-dimensional representations of semisimple Lie groups’, Ann. Math., 106 (1977), 295–308.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. A. Wolf M. Cahen M. De Wilde

Rights and permissions

Reprints and permissions

Copyright information

© 1980 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Varadarajan, V.S. (1980). Infinitesimal Theory of Representations of Semisimple Lie Groups. In: Wolf, J.A., Cahen, M., De Wilde, M. (eds) Harmonic Analysis and Representations of Semisimple Lie Groups. Mathematical Physics and Applied Mathematics, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8961-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8961-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8963-4

  • Online ISBN: 978-94-009-8961-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics