Skip to main content

Intuition and Rigor: Some Problems of a ‘Logic Of Discovery’ in Mathematics

  • Chapter
Italian Studies in the Philosophy of Science

Part of the book series: Boston Studies in the Philosophy of Science ((BSPS,volume 47))

Abstract

In a famous intervention at the Second International Congress of Mathematicians (Paris, 1900), Poincaré divided research mathematicians, from Euclid onwards, into two groups: those who are rigorous (or ‘analysts’) and leave nothing to chance, and those who are intuitive (or ‘geometricians’) and make rapid, but often precarious conquests. While recognizing that “both analysis and synthesis have their legitimate role” and that consequently mathematical research, in order to make progress, cannot do without either group, he added, however, that “in becoming rigorous, mathematics assumes an artificial character [. . .]; it forgets its historical origins.”2 Regressive results, in research not less than in didactics, could be avoided only by carefully distinguishing between the roles of the two groups: with ‘analysis’ it is mathematical proof; with ‘synthesis’, on the other hand, it is mathematical invention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Bourbaki, N. (1969), Eléments d’histoire des mathématiques. 2nd edition, revised and enlarged. Paris, Hermann.

    Google Scholar 

  • Courant, R. (1950), Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces. New York, Interscience Publishers.

    Google Scholar 

  • Dieudonné, J. (1947), Cours de géométrie algébrique. (Volume I: Aperçu historique), Paris, Presses Universitaires de France.

    Google Scholar 

  • Dugac, P. (1973), ‘Elements d’analyse de Karl Weierstrass’, Archive for the History of Exact Sciences 10, 41–176.

    Article  Google Scholar 

  • Fano, G. (1929), ‘Geometrie non euclidee e non archimedee’, in Enciclopedia delle matematiche elementari e complementi edited by L. Berzolari, G. Vivanti, D. Gigli. Volume II. Milan, Hoepli, 1929 and later years: the citations are from the reprint, Milan, 1958, pp. 435–511.

    Google Scholar 

  • Feyerabend, P.K. (1970), ‘Consolations for the specialist’, in Criticism and the Growth of Knowledge, ed. by Imre Lakatos and Alan Musgrave. Cambridge, at the University Press, pp. 197–230.

    Google Scholar 

  • Geymonat, L. (1953), Saggi di filosofia neorazionalistica. Turin, Einaudi.

    Google Scholar 

  • Geymonat, L. (1957), ‘Matematica ed esperienza’, Il pensiero 2, 332–339, reprinted in Geymonat (1960), pp. 181–188.

    Google Scholar 

  • Geymonat, L. (1960), Filosofia e filosofia della scienza. Milan, Feltrinelli.

    Google Scholar 

  • Giorello, G. (1975a), ‘Il problema di Dirichlet e il metodo della proiezione ortogonale’, from Seminario di storia della fisica, 1–2 June, 1974, edited by E. Bellone. Genoa, 1975. pp. 133–165.

    Google Scholar 

  • Giorello, G. (1975b), ‘Archimedes and the methodology of research programmes’, Scientia 110, 125–135.

    Google Scholar 

  • Giorello, G. and Mondadori, M. (1978), ‘Dinamica della conoscenza scientifica’, in La razionalità scientifica, ed. by U. Curi. Padua, Francisci.

    Google Scholar 

  • Hahn, H. (1933), Logik, Mathematik undNaturerkennen. Vienna, Gerold. (The first four sections of this pamphlet have been translated, by Arthur Pap, as ‘Logic, Mathematics and Knowledge of Nature’ in Logical Positivism, ed. by A.J. Ayer. Glencoe, The Free Press, 1959. pp. 147–161. The passages quoted in this paper are on p. 159.)

    Google Scholar 

  • Hesse, M. (1976), ‘Truth and the growth of scientific knowledge’, in Proceedings of the 1976 Biennial Meeting of the Philosophy of Science Association, ed. by F. Suppe and P.D. Asquith. East Lansing, Philosophy of Science Association, Vol. 2.

    Google Scholar 

  • Howson, C. (1975), ‘Methodology in non-empirical disciplines’ in Criteria of scientific progress: a critical rationalist view by members of the Department of Philosophy, London School of Economics.

    Google Scholar 

  • Klein, F. (1894), ‘Riemann und seine Bedeutung für die Entwicklung der modernen Mathematik. Amtlicher Bericht der Naturforscherversammlung zu Wien’, Gesammelte mathematische Abhandlungen. 3 Vols. Berlin, Springer, 1921–1923. See Volume 3, pp. 482–497.

    Google Scholar 

  • Kline, M. (1972), Mathematical Thought from Ancient to Modern Times. New York, Oxford University Press.

    Google Scholar 

  • Koertge, N. (1973), ‘Theory change in science’ in Conceptual Change, edited by G. Pearce and P. Maynard. Dordrecht, Reidel.

    Google Scholar 

  • Lakatos, I. (1962), ‘Infinite regress and the foundations of mathematics’ Aristotelian Society Supplementary Volume 36, 155–84; reprinted in Lakatos’ Philosophical Papers, 2 Vols. Ed. by John Worrall and Gregory Currie. Cambridge, Cambridge University Press, 1978. Vol. 2: Mathematics, Science and Epistemology, pp. 3–23.

    Google Scholar 

  • Lakatos, I. (1963–64), I. (1963–64), ‘Proofs and refutations’, The British Journal for the Philosophy of Science 14, pp. 1–25, 120–39, 221–43, 296–342. See also Lakatos (1976a).

    Google Scholar 

  • Lakatos, I. (1967), ‘A renaissance of empiricism in the recent philosophy of mathematics?’ (abstract) in Problems in the Philosophy of Mathematics. Proceedings of the International Colloquium in the Philosophy of Science, Bedford College, 1965. Volume I. Edited by Imre Lakatos. Amsterdam, North-Holland, 1967. Republished in a much expanded form as Lakatos (1976b).

    Google Scholar 

  • Lakatos, I. (1970), ‘Falsification and the methodology of scientific research programmes’ in Criticism and the Growth of Knowledge. Proceedings of the International Colloquium in the Philosophy of Science, London, 1965, Volume 4, ed. by Imre Lakatos and Alan Musgrave. Cambridge, Cambridge University Press, pp. 91–196.

    Google Scholar 

  • Lakatos, I. (1976a), Proofs and Refutations; the Logic of Mathematical Discovery, ed. by John Worrall and Elie Zahar. Cambridge, Cambridge University Press. Lakatos (1963–64) is reprinted as Chapter I of this posthumous revised and enlarged edition.

    Google Scholar 

  • Lakatos, I. (1976b), ‘A renaissance of empiricism in the recent philosophy of mathematics?’, The British Journal for the Philosophy of Science 27, 201–23; reprinted in Lakatos’ Philosophical Papers. 2 Vols, ed. by John Worrall and Gregory Currie, Cambridge, Cambridge University Press. Vol. 2: Mathematics, Science and Epistemology, pp. 24–42.

    Article  Google Scholar 

  • Manning, K.R. (1975), ‘The emergence of the Weierstrassian approach to complex analysis’, Archive for the History of Exact Sciences 14, 297–383.

    Article  Google Scholar 

  • Monna, A.F. (1975), Dirichlet’s Principle. Utrecht, Oosthoek, Scheltema and Holkema.

    Google Scholar 

  • Mooij, J.J.A. (1966), La philosophie des mathématiques de Henri Poincaré, Translated into French by H. Helding. Paris, Gauthier-Villars.

    Google Scholar 

  • Poincaré, H. (1900), ‘Du rôle de l’intuition et de la logique’ in Compte rendu du Deuxième congrès international des mathématiciens. Paris, Gauthier-Villars, 1902, pp. 115–130.

    Google Scholar 

  • Poincaré, H. (1902), La science et l’hypothèse. Paris, Flammarion; edition ed. by J. Vuillemin. Paris, Flammarion, 1968. (Science and Hypothesis, Trans, by W.J. Greenstreet. London, Walter Scott, 1905.)

    Google Scholar 

  • Popper, K.R. (1959), The Logic of Scientific Discovery. London, Hutchinson.

    Google Scholar 

  • Popper, K.R. (1972), Objective Knowledge. An Evolutionary Approach. Oxford, Clarendon Press.

    Google Scholar 

  • Russo, F. (1974), ‘Typologie du progrès des connaissances scientifiques’, Revue des questions scientifiques, 145, 345–363 and 479–502.

    Google Scholar 

  • Urbach, P. (1975), ‘The objective promise of a research programme’ in Criteria of Scientific Progress: A Critical Rationalist View by members of the Department of Philosophy, London School of Economics.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 D. Reidel Publishing Company

About this chapter

Cite this chapter

Giorello, G. (1980). Intuition and Rigor: Some Problems of a ‘Logic Of Discovery’ in Mathematics. In: Dalla Chiara, M.L. (eds) Italian Studies in the Philosophy of Science. Boston Studies in the Philosophy of Science, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8937-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8937-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-1073-4

  • Online ISBN: 978-94-009-8937-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics