Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 9))

  • 33 Accesses

Abstract

Radioactive tracers have been employed for the evaluation of cardiac structure and function for over 50 years. The discipline had its genesis in 1927 with the innovative experiments of Blumgart and Weiss [1]. These investigators, utilizing the principles of the radioactive tracer method devised by Hevesy [2], measured circulation in man by injecting a dose of radium C-salt (radon) into an antecubital vein detecting its arrival in the contralateral brachial artery with a Wilson cloud chamber. This technique was revived by Prinzmetal and associates [3] in 1948 with the advent of atomic age technology. Using a Geiger-Muller counter and the artifical radionuclide 24Na, these investigators repeated the Blumgart and Weiss determination of circulation time also recording temporal changes in the radioactivity over the heart and lungs. The radionuclide angiocardiogram was thus discovered. Many improvements in instrumentation and radiopharmaceuticals have since been introduced to facilitate evaluation of the central circulation. Cardiovascular nuclear medicine procedures today encompass a myriad of qualitative and quantitative techniques including: (1) detection and quantitation of intracardiac shunts, (2) measurements of regional myocardial blood flow, (3) visualization of anatomic relationships of major cardiovascular structures — such as chamber dilatation, ventricular or septal hypertrophy, pericardial effusion, or ventricular aneu-rysm, (4) identification of intracardiac clot or mass, (5) evaluation of heart mechanical function, (6) identification, anatomic localization, and sizing of acute myocardial infarcts, (7) noninvasive assessment of myocardial perfusion at rest and during exercise or pharmacologic stress, (8) assessment of severity of valvular regurgitation, and (9) evaluation of regional myocardial metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blumgart HL, Weiss S: Studies on the velocity of blood flow. J Clin Invest 4:15, 1927.

    Article  PubMed  CAS  Google Scholar 

  2. Hevesy G: The absorption and translocation of lead by plants: A contribution to the application of the method of radioactive indicators in the investigation in the change of substance in plants. Biochem J 17:439, 1923.

    PubMed  CAS  Google Scholar 

  3. Prinzmetal M, Corday E, Bergman HC, Schwartz L, Spritzler RJ: Radiocardiography: a new method for studying the blood flow through the chambers of the heart in human beings. Science108:340, 1948.

    Article  PubMed  CAS  Google Scholar 

  4. Bender MA, Blau M: The autofluoroscope. Nucleonics 21:52, 1963.

    Google Scholar 

  5. Kuhl DE, Edwards RQ: Image separation radioisotope scanning. Radiology 80:653, 1963.

    Google Scholar 

  6. Kuhl DE, Edwards RQ, Ricci AR, et al.: The Mark IV system for radionuclide computed tomography of the brain. Radiology121:405, 1976.

    PubMed  CAS  Google Scholar 

  7. Anger HO: Multiplane tomographic gamma-ray scanner. In: Medical radioisotope scintigraphy, Vol I, p 203. Vienna: Int. Atomic Energy Agency, 1969.

    Google Scholar 

  8. Anger HO: Multiplane tomographic scanner. In: Tomographic imaging in nuclear medicine, p 2, Freedman GS, ed. New York: Soc. Nucl. Med., 1973.

    Google Scholar 

  9. Chang LT, Kaplan SN, MacDonald B, et al.: A method of tomographic imaging using a multiple pinhole coded aperture. J Nucl Med15:1063, 1974.

    PubMed  CAS  Google Scholar 

  10. Chang LT, MacDonald B, Perez-Mendez V: Coded aperture imaging of gamma rays using multiple pinhole arrays and multiwire proportional chamber detector. IEEE Trans Nucl Sci 5–22:374, 1975.

    Article  Google Scholar 

  11. Koral RF, Rogers WL, Knoll GF: Digital tomographic imaging with time-modulated and pseudo random coded aperture. J Nucl Med16:402, 1975.

    PubMed  CAS  Google Scholar 

  12. Bowley AR, Taylor CG, Causer DA, Barber DC, et al.: A radioisotope scanner for rectilinear, transverse section and longitudinal section scanning: (ASS-the Aberdeero Section Scanner). Br J Radiol 46:262, 1973.

    Article  PubMed  CAS  Google Scholar 

  13. Stokely EM, Sveinsdottir, Lassen NA, Rommer P: A single photon dynamic computer assisted tomograph for imaging brain function in multiple cross sections. J Comput Assist Tomogr 4:230, 1980.

    Article  PubMed  CAS  Google Scholar 

  14. Vogel RA, Kirch D, LeFree M, et al.: A new method of multiplane tomography using a seven pinhole collimator and an Anger scintillation camera. J Nucl Med 19:648, 1978.

    PubMed  CAS  Google Scholar 

  15. Gordon R: A tutorial on ART (algebraic reconstruction techniques). IEEE Trans Nucl Sci 5–21:78, 1974.

    Google Scholar 

  16. Gordon R, Herman GT: Three dimensional reconstruction from projections: a review of algorithms. Int Rev Cytol 38:111, 1974.

    Article  PubMed  CAS  Google Scholar 

  17. Mertz L, Young NO: Fresnel transformation of images. In: Proc. Int Conf on Optical Instrumentation, p 305. London: Chapman & Hall, 1961.

    Google Scholar 

  18. Barret HN: Fresnel zone plate imaging in nuclear medicine. J Nucl Med 13:382, 1972.

    Google Scholar 

  19. Rogers WL, Han KS, Jones LW, et al.: Applications of a fresnel zone plate to gamma ray imaging. J Nucl Med 13:612, 1972.

    PubMed  CAS  Google Scholar 

  20. Shepp LA, Logan BF: The Fourier reconstruction of a head section. IEEE Trans Nucl Sci 5–21:21–43, 1974.

    Google Scholar 

  21. Bracewell RN: Strip integration in radioastronomy. Aust J Phys 9:198, 1956.

    Article  Google Scholar 

  22. Cho ZH: General views on 3-d image reconstruction and computerized transverse axial tomography. IEEE Trans Nucl Sci 5–21:44, 1974.

    Google Scholar 

  23. Herman GT, Rowland SW: Three methods for reconstructing objects from X rays: a comparative study. Com Graphics and Image Processing 2:151, 1973.

    Article  Google Scholar 

  24. Budinger TF, Gullberg GT, Huesman RH: Emission computed tomography. In: Image reconstruction from projections; implementation and applications, Herman GT, ed. Vol. 32 of Topics in Applied Physics, p 147 New York: Springer-Verlag, 1979.

    Google Scholar 

  25. Anger HO, Price DC, Yost PE: Transverse-section scanning with the scintillation camera. J Nucl Med 8:314, 1967.

    Google Scholar 

  26. Keyes JW, Orlandea N, Heetderks WJ, et al.: The humongotron — a scintillation camera transaxial tomograph. J Nucl Med 18:381, 1977.

    PubMed  Google Scholar 

  27. Jasyczak RJ, Murphy PH, Huard D, Burdine JA: Radionuclide emission computed tomography of the head with 99mTc and a scintillation camera. J Nucl Med 18:373, 1977.

    Google Scholar 

  28. Chesler DA: Positron tomography and three-dimensional reconstruction technique. In: Tomographic imaging in nuclear medicine, p 176, Freedman GS, ed. New York: Soc. Nucl Med, 1973.

    Google Scholar 

  29. Phelps ME, Hoffman EJ, Mullani NA, et al.: Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16:210, 1975.

    PubMed  CAS  Google Scholar 

  30. Phelps ME, Hoffman EJ, Highfill R, Kuhl DE: A new emission computed axial tomography for positron emitters. J Nucl Med 18:603, 1975.

    Google Scholar 

  31. Bohm Eriksson L. Bergtrom, et al.: A computer assisted ring detector positron camera system for reconstruction tomography of the brain. IEEE Trans Nucl Sci 5–25:624, 1978.

    Article  Google Scholar 

  32. Cho ZH, Chan JK, Eriksson L: Circular ring transverse axial positron camera for 3-dimensional reconstruction of radionuclides distribution. IEEE Trans Nucl Sci 5–23:613, 1976.

    Article  Google Scholar 

  33. Robertson JS, Marr RB, Rosenblum M, et al.: 32-crystal positron transverse section detector. In: Tomographie imaging in nuclear medicine, p 142, Freedman GS, ed. New York: Soc. Nucl. Med., 1973.

    Google Scholar 

  34. Ter-Pogossian MM, Mullani NA, Hood JT, et al.: Design considerations for a positron emission transverse tomography (PETTV) for imaging of the brain. J Comput Assist Tomog 2:539, 1978.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Martinus Nijhoff Publishers bv. The Hague

About this chapter

Cite this chapter

Lewis, S., Stokely, E., Parkey, R. (1980). Instrumentation for Radionuclide Cardiology. In: Wackers, F.J.T. (eds) Thallium-201 and Technetium-99m-Pyrophosphate Myocardial Imaging in the Coronary Care Unit. Developments in Cardiovascular Medicine, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8904-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8904-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8906-1

  • Online ISBN: 978-94-009-8904-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics