The Slow Inward Current: Non-Voltage-Clamp Studies

  • Edward Carmeliet
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 7)


Although Na+ is the primary ion carrier responsible for the greatest part of the upstroke in myocardial fibers, it has become clear that Ca++ ions play an important role in the depolarization process, especially in determining the late part of the upstroke and the total height of the action potential. As early as 1956, Coraboeuf and Otsuka[l] made an observation that was difficult to reconcile with the simple Na+ hypothesis. In the guinea-pig ventricle, they found that, although Vmax of the upstroke was reduced in low Na+ media, the amplitude and the plateau height were not. In the frog myocardium the amplitude of the action potential also did not behave as a Na+ electrode when the external Na+ concentration was lowered [2, 3].


Purkinje Fiber Pacemaker Activity Diastolic Depolarization Cardiac Purkinje Fiber Plateau Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coraboeuf E, Otsuka M: L’action des solutions hyposodiques sur les potentiels cellulaires de tissu cardiaque de mammiferes. Compt. Rend. Acad Sci (Paris) 243: 441–444, 1956.Google Scholar
  2. 2.
    Brady AJ, Woodbury JW: Effects of sodium and potassium on repolarization in frog ventricular fibers. In: The electrophysiology of the heart. Hecht HH (ed). Ann NY Acad Sci 65:687–692, 1957.Google Scholar
  3. 3.
    Brady AJ, Woodbury JW: The sodium-potassium hypothesis as the basis of electrical activity in frog ventricle. J. Physiol (Lond) 154: 385–407, 1960.Google Scholar
  4. 4.
    Trautwein W, Zink K: Uber Membran- und Aktionspotentiale einzelner Myokardfasern des Kalt- und Warmbliiterherzens. Pfliigers Arch ges Physiol 256: 68–84 1952.CrossRefGoogle Scholar
  5. 5.
    Hoffman BF, Cranefield P: Electrophysiology of the heart. New York, McGraw-Hill, 1960.Google Scholar
  6. 6.
    Wright EB, Ogata M: Action potential of amphibian single auricular muscle fiber: a dual response. Amer J Physiol 201: 1101–1108, 1961.PubMedGoogle Scholar
  7. 7.
    Antoni H, Delius W: Nachweis von zwei Komponenten in der Anstiegsphase des Aktions- potentials von Froschmyokardfasern. Pfliigers Arch ges Physiol 283: 187–202, 1965.CrossRefGoogle Scholar
  8. 8.
    Niedergerke R, Orkand RK: The dual effect of calcium on the action potential of the frog’s heart. J Physiol (Lond) 184: 291–311, 1966.Google Scholar
  9. 9.
    Rougier O, Vassort G, Gamier D, Gargouil1 Y-M, Coraboeuf E: Existence and role of a slow inward current during the frog atrial action potential. Eur J Physiol 308: 91–110, 1969.CrossRefGoogle Scholar
  10. 10.
    Fatt P, Ginsborg BL: The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol (Lond) 142: 516–543, 1958.Google Scholar
  11. 11.
    Reuter H: Divalent cations as charge carriers in excitable membranes. Progr Biophys molec Biol 26: 1–43, 1973.CrossRefGoogle Scholar
  12. 12.
    Carmeliet E, Vereecke J: Electrogenesis of the action potential and automaticity. In: Handbook of Physiology. — The cardiovascular system I, 269–334, 1979, Ch 7.Google Scholar
  13. 13.
    Reuter H: Strom-Spannungsbeziehungen von Purkinje-Fasern bei verschiedenen extracellula- ren Calcium-Konzentrationen und unter Adrenalineinwirkung. Pfliigers Arch ges Physiol 287: 357–367, 1966.CrossRefGoogle Scholar
  14. 14.
    Reuter H, Scholz H: Uber den Einfluss der extracellularen Ca-Konzentration auf Membran- potential und Kontraktion isolierter Herzpraparate bei graduierter Depolarization. Pfliigers Arch ges Physiol. 300: 87–107, 1968.CrossRefGoogle Scholar
  15. 15.
    Mascher D: Electrical and mechanical responses from ventricular muscle fibers after inactivation of the sodium carrying system. Eur J Physiol 317: 359–372, 1970.CrossRefGoogle Scholar
  16. 16.
    Engstfeld G, Antoni H, Fleckenstein A: Die Restitution der Erregungsfortleitung und Kon- traktionskraft des K + -gelahmten Frosch- und Saugetiermyokards durch Adrenalin. Pfliigers Arch ges Physiol. 273: 145–163, 1961.CrossRefGoogle Scholar
  17. 17.
    Carmeliet E, Vereecke J: Adrenaline and the plateau phase of the cardiac action potential. Eur J Physiol 313: 300–315, 1969.CrossRefGoogle Scholar
  18. 18.
    Pappano AJ: Calcium-dependent action potentials produced by catecholamines in guinea pig atrial muscle fibers depolarized by potassium. Circulat Res 27: 379–390, 1970.PubMedGoogle Scholar
  19. 19.
    Miura Y, Inui J, Imamura H: Alpha-adrenoceptor-mediated restoration of calcium-dependent potential in the partially depolarized rabbit papillary muscle. Naunyn-Schmiedeberg’s Arch exp Path Pharmak 301: 201–205, 1978.CrossRefGoogle Scholar
  20. 20.
    Schneider JA, Sperelakis N: Slow Ca2 + and Na+ responses induced by isoproterenol and methylxanthines in isolated perfused guinea pig hearts exposed to elevated K +. J Molec Cell Cardiol 7: 249–273, 1975.CrossRefGoogle Scholar
  21. 21.
    Aronson RS, Cranefield PF: The electrical activity of canine cardiac Purkinje fibers in sodium-free, calcium-rich solutions. J Gen Physiol 61: 786–808, 1973.PubMedCrossRefGoogle Scholar
  22. 22.
    Carmeliet E: The ionic basis of membrane excitation in ordinary myocardial fibres. Some aspects of the sodium and calcium conductance. Fleckenstein A (ed.) Baltimore md, University Park Press 5:3–11, 1975.Google Scholar
  23. 23.
    Verdonck F: Calcium-mediated action potentials and related mechanical activity in cardiac muscle. Thesis, Acco, Leuven, 1976.Google Scholar
  24. 24.
    Bernard C, Sassine A, Gargou’fl YM: Actions of Ca2 +, Sr2+ and Ba2+ on the electrical properties of cardiac membrane. Bioelectrochem. Bioenerget 1: 200–207, 1974.CrossRefGoogle Scholar
  25. 25.
    Chesnais JM, Coraboeuf E, Sauviat MP, Vassas JM: Effets des ions H +, Li + et Sr + + sur les courants transmembranaires des fibres atriales de grenouille. Compt Rend Acad Sci, (Paris) 273: 204–207, 1971.Google Scholar
  26. 26.
    Kohlhardt M, Bauer B, Krause H, Fleckenstein A: Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibres by the use of specific inhibitors. Eur J Physiol 335: 309–322, 1972.CrossRefGoogle Scholar
  27. 27.
    Kohlhardt M, Bauer B, Krause H, Fleckenstein A: Selective inhibition of the transmembrane Ca conductivity of mammalian myocardial fibres by Ni, Co and Mn ions. Eur J Physiol 338: 115–123, 1973.CrossRefGoogle Scholar
  28. 28.
    Vereecke J, Carmeliet E: Sr action potentials in cardiac Purkyne fibres. I. Evidence for a regenerative increase in Sr conductance. Eur J Physiol 322: 60–72, 1971.CrossRefGoogle Scholar
  29. 29.
    Coraboeuf E, Vassort G: Effects of some inhibitors of ionic permeabilities on ventricular action potential and contraction of rat and guinea-pig hearts. J Electrocardiol 1: 19–29, 1968.PubMedCrossRefGoogle Scholar
  30. 30.
    Pappano AJ, Sperelakis N: Spike electrogenesis in cultured heart cells. Amer J Physiol 217: 615–624, 1969.PubMedGoogle Scholar
  31. 31.
    Reuter H, Scholz H: The regulation of the calcium conductance of cardiac muscle by adrenaline. J Physiol (Lond) 264: 49–62, 1977.Google Scholar
  32. 32.
    Deleze J: Perfusion of a strip of mammalian ventricle. Effects of K-rich and Na-deficient solutions on transmembrane potentials. Circulat Res 7: 461–465, 1959.PubMedGoogle Scholar
  33. 33.
    McDonald TF, Trautwein W: The potassium current underlying delayed rectification in cat ventricular muscle. J Physiol (Lond) 274: 217–246, 1978.Google Scholar
  34. 34.
    Reiter M, Stickel FJ: Der EinfluB der Kontraktionsfrequenz auf das Aktionspotential des Meerschweinchen-Papillarmuskels. Naunyn-Schmiedebergs Arch exp Path Pharmak 260: 342–365, 1968.CrossRefGoogle Scholar
  35. 35.
    Weidmann S: The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J Physiol (Lond) 127: 213–224, 1955.Google Scholar
  36. 36.
    Noma A, Irisawa H: Effects of calcium ion on the rising phase of the action potential in rabbit sino-atrial node cells. Jap J Physiol 26: 93–99, 1976a.CrossRefGoogle Scholar
  37. 37.
    Noma A, Irisawa H: Membrane currents in the rabbit sinoatrial node cell as studied by the double microelectrode method. Eur J Physiol 364: 45–52, 1976b.CrossRefGoogle Scholar
  38. 38.
    Imanishi, S: Calcium-sensitive discharges in canine Purkinje fibers. Jap J Physiol 24:443– 463, 1971.Google Scholar
  39. 39.
    Lenfant J, Mironneau J, Aka JK: Activite repetitive de la fibre sino-auriculaire de grenouille: Analyse des courants membranaires responsables de Fautomatisme cardiaque. J Physiol (Paris) 64: 5–18, 1972.Google Scholar
  40. 40.
    Katzung BG: Effects of extracellular calcium and sodium on depolarization-induced automaticity in guinea pig papillary muscle. Circulat Res 37: 118–127, 1975.PubMedGoogle Scholar
  41. 41.
    Trautwein W, Kassebaum DG: On the mechanism of spontaneous impulse generation in the pacemaker of the heart. J Gen Physiol 45: 317–330, 1961.PubMedCrossRefGoogle Scholar
  42. 42.
    Trautwein W: Pathophysiologic des Herzflimmerns. Verh. Deutsche Gesellschaft fur Kreis- laufforschung, 30 Tagung, p 40–56, 1964.Google Scholar
  43. 43.
    Vassalle M, Karis J, Hoffman BF: Toxic effects of ouabain on Purkinje fibers and ventricular muscle fibers. Amer J Physiol 203: 433–439, 1962.PubMedGoogle Scholar
  44. 44.
    Carmeliet EE: Chloride and potassium permeability in cardiac Purkinje fibres. Thesis, Presses Academiques Europeennes, Brussels, 1961.Google Scholar
  45. 45.
    Weidmann S: Elektrophysiologie der Herzmuskelfaser. Huber, Bern, 1956.Google Scholar
  46. 46.
    Davis LD, Helmer PR, Ballantyne III F: Production of slow responses in canine cardiac Purkinje fibers exposed to reduced pH. J Molec Cell Cardiol 8: 61–76, 1976.CrossRefGoogle Scholar
  47. 47.
    Coraboeuf E, Deroubaix E, Hoerter J: Control of ionic permeabilities in normal and ischemic heart. Circulat Res 38, Suppl. 1: 92–98, 1976.Google Scholar
  48. 48.
    Cranefield PF: The conduction of the cardiac impulse. New York, Futura, 1975.Google Scholar
  49. 49.
    Carmeliet E: Decrease of K efflux and influx by external Cs ions in cardiac Purkinje and muscle cells. Eur J Physiol 383: 143–150, 1980.CrossRefGoogle Scholar
  50. 50.
    Brown HF, Noble SJ: Effects of adrenaline on membrane currents underlying pacemaker activity in frog atrial muscle. J. Physiol (Lond) 238: 51–53, 1974.Google Scholar
  51. 51.
    Imanishi S, Surawicz B: Automatic activity in depolarized guinea pig ventricular myocardium. Characteristics and mechanisms. Circulat Res 39: 749–759, 1976.Google Scholar
  52. 52.
    Pappano AJ, Carmeliet E: Epinephrine and the pacemaking mechanism at plateau potentials in sheep cardiac Purkinje fibers. Eur J Physiol 382: 17–26, 1979.CrossRefGoogle Scholar
  53. 53.
    Cranefield PF, Aronson RS, Wit AL: Effect of verapamil on the normal action potential and on a calcium-dependent slow response of canine cardiac Purkinje fibers. Circulat Res 34:204– 213, 1974.Google Scholar
  54. 54.
    Vassalle M: Electrogenic suppression of automaticity in sheep and dog Purkinje fibers. Circulat Res 27: 361–377, 1970.PubMedGoogle Scholar
  55. 55.
    Brown HF, Clark A, Noble SJ: Analysis of pace-maker and repolarization currents in frog atrial muscle. J Physiol (Lond) 258: 547–577, 1976.Google Scholar
  56. 56.
    Hauswirth O, Noble D, Tsien RW: The mechanism of oscillatory activity at low membrane potentials in cardiac Purkinje fibres. J Physiol (Lond) 200: 255–265, 1969.Google Scholar
  57. 57.
    Katzung BG, Morgenstern JA: Effects of extracellular potassium on ventricular automaticity and evidence for a pacemaker current in mammalian ventricular myocardium. Circulat Res 40: 105–111, 1977.PubMedGoogle Scholar
  58. 58.
    Davis LD: Effect of changes in cycle length on diastolic depolarization produced by ouabain in canine Purkinje fibers. Circulat Res 32: 206–214, 1973.PubMedGoogle Scholar
  59. 59.
    Ferrier GR, Moe GK: Effect of calcium on acetylstrophanthidin-induced transient depolarizations in canine Purkinje tissue. Circulat Res 33: 508–515, 1973.PubMedGoogle Scholar
  60. 60.
    Ferrier GR, Saunders JH, Mendez C: A cellular mechanism for the generation of ventricular arrhythmias by acetylstrophanthidin. Circulat Res 32: 600–609, 1973.PubMedGoogle Scholar
  61. 61.
    Lederer WJ, Tsien RW: Transient inward current underlying arrhythmogenic effects of cardiotonic steroids in Purkinje fibres. J Physiol (Lond) 263: 73–100, 1976.Google Scholar
  62. 62.
    Weingart R, Kass RS, Tsien RW: Roles of calcium and sodium ions in the transient inward current induced by strophanthidin in cardiac Purkinje fibers. Biophys J 17: 3a, 1977.Google Scholar
  63. 63.
    Saito, T, Oto M, Matsubara T: Electrophysiological studies of the mechanism of electrically induced sustained rhythmic activity in the rabbit right atrium. Circulat Res 42: 199–206, 1978.PubMedGoogle Scholar
  64. 64.
    Cranefield PF: Action potentials, afterpotentials, and arrhythmias. Circulat Res 41: 415–423, 1977.PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers bv, The Hague/Boston/London 1980

Authors and Affiliations

  • Edward Carmeliet

There are no affiliations available

Personalised recommendations