Skip to main content

Electrophysiological, Biochemical and Pharmacological Aspects of Reentrant Ventricular Arrhythmias in the Late Myocardial Infarction Period

  • Chapter
Sudden Death

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 4))

  • 67 Accesses

Abstract

Myocardial infarction represents a highly likely source of reentrant ventricular arrhythmias, Although most studies of the early phase of ventricular arrhythmias that follow acute ligation of a major coronary artery in the dog have shown some of the basic prerequisites for reentry in the form of desynchronized slow conduction in ischemic myocardium (1–8), they all fall short of actually documenting the presence of reentry. This was due, we believe, to the highly dynamic situation following acute ligation of a major coronary artery with constantly changing electrophysiological properties in the ischemic zone. Thus, it is difficult to conduct systematic electrophysiological studies of the possible reentrant mechanism under such dynamic conditions. In addition, the recording techniques usually failed to demonstrate the one unequivocal evidence for reentry, viz: the presence of continuous electrical activity originating from the infarction zone that regularly and predictably bridge the diastolic interval between the reentrant beat and the preceding impulse, as well as between consecutive reentrant beats (9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gambetta M, Childers RW: The initial electrophysiologic disturbance in experimental myocardial infarction. Ann Intern Med 70: 1076, (abstr) 1969.

    Google Scholar 

  2. Han J: Mechanisms of ventricular arrhythmias associated with myocardial infarction. Am J Cardiol 24: 800–813, 1969.

    Article  PubMed  CAS  Google Scholar 

  3. Durrer D, Van Dam RTH, Freud GE, Janse MJ: Reentry and ventricular arrhythmias in local ischemia and infarction of the intact dog heart. Proc Kon Ned Akad Van Wetensch Amsterdam C73: no 4, 1971.

    Google Scholar 

  4. Waldo AL, Kaiser GA: A study of ventricular arrhythmias associated with acute myocardial infarction in the canine heart. Circulation 47: 1222–1288, 1973.

    PubMed  CAS  Google Scholar 

  5. Boineau JP, Cox JL: Slow ventricular activation in acute myocardial infarction. A source of re-entrant premature ventricular contractions. Circulation 48: 702–713, 1973.

    PubMed  CAS  Google Scholar 

  6. Scherlag BJ, El-Sherif N, Hope R. Lazzara R: Characterization and localization of ventricular arrhythmias due to myocardial ischemia and infarction. Circ Res 35: 372–383, 1974.

    PubMed  CAS  Google Scholar 

  7. Williams DO, Scherlag BJ, Hope R, El-Sherif N. Lazzara R: The pathophysiology of malignant ventricular arrhythmias during acute myocardial ischemia. Circulation 50: 1163–1172, 1974.

    PubMed  CAS  Google Scholar 

  8. El-Sherif N, Scherlag BJ, Lazzara R: Electrode catheter recordings during malignant ventricular arrhythmias following experimental acute myocardial ischemia. Circulation 51: 1003–1014, 1975.

    PubMed  CAS  Google Scholar 

  9. El-Sherif N, Scherlag BJ, Lazzara R, Hope RR: Reentrant ventricular arrhythmias in the late myocardial period. 1. Conduction characteristics in the infarction zone. Circulation 55: 686–702, 1977.

    PubMed  CAS  Google Scholar 

  10. El-Sherif N, Hope RR, Scherlag BJ, Lazzara R: Reentrant ventricular arrhythmias in the late myocardial infarction period. 2. Pattern of initiation and termination of reentry. Circulation 55: 702–719, 1977.

    PubMed  CAS  Google Scholar 

  11. El-Sherif N, Lazzara R, Hope RR, Scherlag BJ: Reentrant ventricular arrhythmias in the late myocardial infarction period. 3. Manifest and concealed extrasystolic grouping. Circulation 56: 225–234, 1977.

    PubMed  CAS  Google Scholar 

  12. El-Sherif N, Scherlag BJ, Lazzara R, Hope RR: Reentrant ventricular arrhythmias in the late myocardial infarction period. 4. Mechanism of action of lidocaine. Circulation 56: 395–402, 1977.

    PubMed  CAS  Google Scholar 

  13. El-Sherif N, Lazzara R: Reentrant ventricular arrhythmias in the late myocardial infarction period. 5. Mechanism of action of diphenylhydantoin. Circulation 57: 465–472, 1978.

    PubMed  CAS  Google Scholar 

  14. El-Sherif N: Reentrant ventricular arrhythmias in the late myocardial infarction period. 6. Effect of the autonomic system. Circulation 58: 103–110, 1978.

    PubMed  CAS  Google Scholar 

  15. El-Sherif N, Lazzara R: Reentrant ventricular arrhythmias in the late myocardial infarction period. 7. Effect of verapamil and D-600 and role of the “slow channel”. Circulation 60: 605–615, 1979.

    PubMed  CAS  Google Scholar 

  16. Lazzara R, Hope RR, El-Sherif N, Scherlag BJ: Effects of lidocaine on hypoxic and ischemic cardiac cells. Am J Cardiology 41: 872–879, 1978.

    Article  CAS  Google Scholar 

  17. Smith RA, EI-Sherif N, Evans AK: Epicardial mapping of ventricular reentrant pathways in the late myocardial infarction period. (abstr) Am J Cardiol 41: 427, 1978.

    Article  Google Scholar 

  18. Edwards JE: What is myocardial infarction? Circulation 39, 40 (suppl IV): IV-5–12, 1969.

    Google Scholar 

  19. Schmitt FO, Erlanger J: Directional differences in the conduction of the impulse through heart muscle and their possible relation to extrasystolic and fibrillary contractions. Am J Physiol 87: 326, 1928.

    Google Scholar 

  20. Schamroth L, Marriott HJL: Concealed ventricular extrasystoles. Circulation 27: 1043–1049, 1963.

    PubMed  CAS  Google Scholar 

  21. Schamroth L: The physiological basis of ectopic ventricular rhythm: A unifying concept. So Afr Med J (suppl) 3–26: 1971.

    Google Scholar 

  22. El-Sherif N, Scherlag BJ, Lazzara R, Samet P: Pathophysiology of tachycardia and bradycardia-dependent block in the canine proximal His-Purkinje system after acute ischemia. Am J Cardiol 33: 529–540, 1974.

    Article  PubMed  CAS  Google Scholar 

  23. Lazzara R, El-Sherif N, Scherlag BJ: Disorders of cellular electrophysiology produced by ischemia of the canine His bundle. Circ Res 36: 444–454, 1975.

    PubMed  CAS  Google Scholar 

  24. Lazzara R, El-Sherif N, Hope RR, Scherlag BJ: Ventricular arrhythmias and electrophysiologic consequences of ischemia and infarction. Cir Res 42: 740–749, 1978.

    CAS  Google Scholar 

  25. Cranefield PF, Klein HO, Hoffman BF: Conduction of the cardiac impulse: 1. Delay, blocks and one-way block in depressed Purkinje fibers. Circ Res 28: 199–219, 1971.

    PubMed  CAS  Google Scholar 

  26. Cranefield PF, Wit AL, Hoffman BF: Conduction of the cardiac impulse. II. Characteristics of very slow conduction. J Gen Physiol 59: 227–246, 1972.

    Article  PubMed  CAS  Google Scholar 

  27. Cranefield PF: The conduction of the cardiac impulse. Mount Kisco, New York, Futura Pub Co, 1975.

    Google Scholar 

  28. Carmeliet E, Vereeke S: Adrenaline and the plateau phase of the cardiac action potential: Importance of Ca+ + Na+, and K+ conductance. Pflueger Arch 313: 300–315, 1969.

    Article  CAS  Google Scholar 

  29. Pappano AJ: Calcium-dependent action potentials produced by catecholamines in guinea pig atrial muscle fibers depolarized by potassium. Circ Res 27: 379–390, 1970.

    PubMed  CAS  Google Scholar 

  30. Shigenobu K, Sperelakis N: Calcium current channels induced by catecholamines in chick embryonic hearts whose fast sodium channels are blocked by tetrodotoxin or elevated potassium. Circ Res 31: 932–952, 1972.

    PubMed  CAS  Google Scholar 

  31. Wit AL, Hoffman BF, Cranefield PF: Slow conduction and reentry in the ventricular conducting system. Return extrasystole in canine Purkinje fibers. Circ Res 30: 11–22, 1972.

    PubMed  CAS  Google Scholar 

  32. Shigenobu K, Schneider JA, Sperelakis N: Verapamil blockade of slow Na+ and Ca++ responses in myocardial cells. J Pharmacol Exp Ther 190: 280–288, 1974.

    PubMed  CAS  Google Scholar 

  33. Wit AL, Bigger JT Jr: Possible electrophysiological mechanisms for lethal arrhythmias accompanying myocardial ischemia and infarction. Circulation 51 (suppl 3): 96–115, 1975.

    Google Scholar 

  34. Thomas M, Shulman G, Opie L: Arteriovenous potassium changes and ventricular arrhythmias after coronary artery occlusion. Cardiovasc Res 4: 327–333, 1970.

    Article  PubMed  CAS  Google Scholar 

  35. Cherry G, Myers MB: The relationship to ventricular fibrillation of early tissue sodium and potassium shifts and coronary vein potassium levels in experimental myocardial infarction. J Thorac Cardiovasc Surg 61: 587–598, 1971.

    Google Scholar 

  36. Griffith J, Leung F: The sequential estimation of plasma catecholamines and whole blood histamine in myocardial infarction. Am Heart J 82: 171–179, 1971.

    Article  Google Scholar 

  37. Downar E, Janse MJ, Durrer D: The effect of “ischemic” blood on transmembrane potentials of normal porcine ventricular myocardium. Circulation 55: 455–462, 1977.

    PubMed  CAS  Google Scholar 

  38. Kuppersmith J. Shiang H, Litwak RS, Herman MV: Electrophysiologic effects of verapamil in canine myocardial ischemia. Am J Cardiol 37:149, 1976 (abstr).

    Google Scholar 

  39. Elharrar J, Gaum WE, Zipes DP: Effect of drugs on conduction delay and incidence of ventricular arrhythmias induced by acute coronary occlusion in dogs. Am J Cardiol 39: 544–549, 1977.

    Article  PubMed  CAS  Google Scholar 

  40. Smith HJ, Singh BN, Nisbet HD, et al: Effect of verapamil on infarct size following experimental coronary occlusion. Cardiovasc Res 9: 569–578, 1975.

    Article  PubMed  CAS  Google Scholar 

  41. Nayler W, Grau A, Slade A: A protective effect of verapamil on hypoxic heart muscle. Cardiovasc Res 10: 650–662, 1976.

    Article  PubMed  CAS  Google Scholar 

  42. Dudel J, Peper K, Rudel R: Effect of tetrodotoxin on the membrane current in cardiac muscle (Purkinje fibers). Pfluegers Arch 295: 213–226, 1967.

    Article  CAS  Google Scholar 

  43. Gettes LS, Reuter H: Slow recovery from inactivation of inward currents in mamalian myocardial fibers. J Physiol 240: 703–724, 1974.

    PubMed  CAS  Google Scholar 

  44. El-Sherif, N: Electrophysiologic basis of procainamide therapeutic and toxic effects on ischemia-related reentrant ventricular arrhythmias. Am J. Cardiology 43:429, 1979 (abstr).

    Google Scholar 

  45. Wellens HJJ, Bär FWHM, Lie KI, Düren DR, Dohmen KJ: Effect of procainamide, propranolol and verapamil on mechanism of tachycardia in patients with chronic recurrent ventricular tachycardia. Am J Cardiol 40: 579–585, 1977.

    Article  PubMed  CAS  Google Scholar 

  46. Rosen MR, Hoffman BF: Mechanisms of action of antiarrhythmic drugs. Circ Res 32: 1–8, 1973.

    PubMed  CAS  Google Scholar 

  47. Kohlhardt M, Bauer B, Kranse H, Fleckenstein A: Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibers by use of specific inhibitors. Pfluegers Arch 335: 309–322, 1972.

    Article  CAS  Google Scholar 

  48. Cranefield PF, Aronson RS, Wit AL: Effect of verapamil on the normal action potential and on a calcium-dependent slow response of canine Purkinje fibers. Circ Res 34: 204–216, 1974.

    PubMed  CAS  Google Scholar 

  49. Watanabe AM, Besch HR Jr: Subcellular myocardial effects of verapamil and D-600: Comparison with propranolol. J Pharmacol Exp Ther 191: 241–251, 1974.

    PubMed  CAS  Google Scholar 

  50. Wit AL, Cranefield PF: The effects of verapamil on the sino-atrial and atrioventricular nodes of the rabbit and the mechanism by which it arrests reentrant AV nodal tachycardia. Circ Res 35: 413–425, 1974.

    PubMed  CAS  Google Scholar 

  51. Angus JA, Richmond DR, Dhumma-Upakorn P, Cobbin LB, Goodman AH: Cardiovascular action of verapamil in the dog with particular reference to myocardial contractility and atrioventricular conduction. Cardiovasc Res 10: 623–632, 1976.

    Article  PubMed  CAS  Google Scholar 

  52. Danile P, Hordoff AJ, Delphin Es, Rosen MR: Verapamil effects on blood superfused Purkinje fibers: Evidence for direct and catecholamine-mediated actions. Am J Cardiol 41:417, 1978 (abstr).

    Google Scholar 

  53. Nawrath H, Ten Eick RE, McDonald TF, Trautwein W: On the mechanism underlying the action of D-600 on slow inward current and tension in mamalian myocardium. Circ Res 40: 408–414, 1977.

    PubMed  CAS  Google Scholar 

  54. Carmeliet E: Cardiac transmembrane potentials and metabolism. Circ Res 42: 577–587, 1478.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Martinus Nijhoff Publishers bv, The Hague

About this chapter

Cite this chapter

El-Sherif, N., Gomes, J.A.C., Kelen, G.J., Khan, R.G., Kang, P.S., Zeiler, R.H. (1980). Electrophysiological, Biochemical and Pharmacological Aspects of Reentrant Ventricular Arrhythmias in the Late Myocardial Infarction Period. In: Kulbertus, H.E., Wellens, H.J.J. (eds) Sudden Death. Developments in Cardiovascular Medicine, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8834-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8834-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8836-1

  • Online ISBN: 978-94-009-8834-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics