Skip to main content

The Oxygen Metabolism of Human Blood Monocytes and Neutrophils

  • Chapter
Mononuclear Phagocytes

Abstract

The monocytes and neutrophilic granulocytes in the mammalian circulation share a number of functional properties. Both cell types are able to move into the tissues to reach the site of an infection and to bind and ingest foreign material. Both cell types can also kill living microorganisms intracellularly and neoplastic cells and erythrocytes extracellularly. On the other hand, there are also distinct functional differences between these cells. Monocytes cooperate with lymphocytes in immuno-logical reactions, playing both an afferent (antigen-processing) and an efferent role (activation by lymphokines). Neutrophils are only involved in this process to the extent that these cells, like monocytes, ingest material opsonized by lymphocytic products. Monocytes also have greater synthetic and digestive capacities than do neutrophils. A number of these characteristics are shown in Table 1. In general, neutrophils are shortlived highly efficient killer cells, whereas monocytes are multifunctional cells that may develop into tissue macrophages with specialized functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Babior, B.M., Kipnes, R.S. & J.T. Curnutte (1973) Biological defense mechanisms. The production by leukocytes of Superoxide, a potential bactericidal agent. Journal of Clinical Investigation 52, 741.

    Article  PubMed  CAS  Google Scholar 

  • Baehner, R.L. & R.B. Johnston Jr (1972) Monocyte function in children with neutropenia and chronic infections. Blood 40,31.

    PubMed  CAS  Google Scholar 

  • Baldridge, C.W. & R.W. Gerrard (1933) The extra respiration of phagocytosis. American Journal of Physiology 103, 235.

    CAS  Google Scholar 

  • Biggar, W.D., Holmes, B., Page, A.R., Deinard, A.S., L’Esperance, P. & R.A. Good (1974) Metabolic and functional studies of monocytes in congenital neutropenia. British Journal of Haematology 28, 233.

    Article  PubMed  CAS  Google Scholar 

  • Burchili, B.R., Oliver, J.M., Pearson, C.B., Leinbach, E.D. & R.D. Berlin (1978) Microtubule dynamics and glutathione metabolism in phagocytizing human polymorphonuclear leukocytes. Journal of Cell Biology 76, 439.

    Article  Google Scholar 

  • Cheson, B.D., Curnutte, J.T. & B.M. Babior (1977) The oxidative killing mechanisms of the neutrophil. Progress in Clinical Immunology 3, 1.

    PubMed  CAS  Google Scholar 

  • Christie, K.E., Kjøsen, B. & C.O. Solberg (1977) Influence of hydrocortisone on granylocyte function and glucose metabolism. Acta Pathologica et Microbiologica Scandinavia, section C, 85, 284.

    Google Scholar 

  • Clark, R.A. & S.J. Klebanoff (1977) Studies on the mechanism of antibody-dependent polymorphonuclear leukocyte-mediated cytotoxicity. Journal of Immunology 119, 1413.

    CAS  Google Scholar 

  • Cline, M.J. (1966) Phagocytosis and synthesis of ribonucleic acid in human granulocytes. Nature 212, 1431.

    Article  PubMed  CAS  Google Scholar 

  • Cline, M.J. & R.I. Lehrer (1968) Phagocytosis by human monocytes. Blood 32, 423.

    PubMed  CAS  Google Scholar 

  • Cowan, W.M. & D.F. Wann (1973) A computer system for the measurement of cell and nuclear sizes. Journal of Microscopy 99, 331.

    Article  PubMed  CAS  Google Scholar 

  • Cross, A.S. & G.H. Lowell (1979) Lymphokine-mediated stimulation of polymorphonuclear leukocyte bactericidal activity, in: M.R. Quastel (ed.) Proceedings of the 12th International Leukocyte Culture Conference, in press.

    Google Scholar 

  • Davis, W.C., Huber, H., Douglas, D. & H.H. Fudenberg (1968) A defect in circulating mononuclear phagocytes in chronic granulomatous disease of childhood. Journal of Immunology 5, 1093.

    Google Scholar 

  • Del Rio, L.A., Ortega, M.G., Lopez, A.L. & J.L. Gorgé (1977) A more sensitive modification of the catalase assay with the Clark oxygen electrode. Application to the kinetic study of the pea leaf enzyme. Analytical Biochemistry 80, 409.

    Article  PubMed  Google Scholar 

  • Evans, W.H. & M.L. Karnovsky (1962) The biochemical basis of phagocytosis. IV. Some aspects of carbohydrate metabolism during phagocytosis. Biochemistry 1, 159.

    Article  PubMed  CAS  Google Scholar 

  • Fleer, A., Roos, D., Borne, A.E.G. Kr. von dem & C.P. Engelfriet (1979) Cytotoxicity of human monocytes against sensitized red cells. This volume.

    Google Scholar 

  • Gale, R.P. & J. Zighelboim (1975) Polymorphonuclear leukocytes in antibody-dependent cellular cytotoxicity. Journal of Immunology 114, 1047.

    CAS  Google Scholar 

  • Ginkel, C.J.W. van & W.G. van Aken (1979) Generation of tissue thrombo-plastin by human monocytes. This volume.

    Google Scholar 

  • Goldstein, I.M., Kaplan, H.B., Radin, A. & M. Frosch (1976) Independent effects of IgG and complement upon human polymorphonuclear leukocyte functions. Journal of Immunology 117, 1282.

    CAS  Google Scholar 

  • Goldstein, I.M., Roos, D., Kaplan, H.B. & G. Weissmann (1975) Complement and immunoglobulins stimulate Superoxide production by human leukocytes independently of phagocytosis. Journal of Clinical Investigation 56, 1155.

    Article  PubMed  CAS  Google Scholar 

  • Graham, R.C. & M.J. Karnovsky (1966) The early stages of absorption of injected horse-radish peroxidase in the proximal tubules of mouse kidney, peroxidase-linked mechanism. Clinical Research 18, 408A. Investigation 53, 131.

    Google Scholar 

  • Griend, R.J. van de, Doom, C.C.H. van & J.A. Loos (1978) Unpublished observations.

    Google Scholar 

  • Henson, P.M. (1969) The adherence of leukocytes and platelets induced by fixed IgG antibody or complement. Immunology 16, 107.

    PubMed  CAS  Google Scholar 

  • Homan-Müller, J.W.T., Weening, R.S. & D. Roos (1975) Production of hydrogen peroxide by phagocytizing human granulocytes. Journal of Laboratory and Clinical Medicine 85, 198.

    PubMed  Google Scholar 

  • Huber, H. & G. Holm (1975) Surface receptors of mononuclear phagocytes: effect of immune complexes on in vitro function in human monocytes, in: R. van Furth (ed.) Mononuclear Phagocytes in Immunity, Infection and Pathology, p. 291. Oxford, Blackwell Scientific Publications.

    Google Scholar 

  • Iyer, G.Y., Islam, M.F. & J.H. Quastel (1961) Biochemical aspects of phagocytosis. Nature 192, 535.

    Article  CAS  Google Scholar 

  • Johnston Jr, R.B., Lehmeyer, J.E. & L.A. Guthrie (1976) Generation of Superoxide anion and chemiluminescence by human monocytes during phagocytosis and on contact with surface-bound immunoglobulin G. Journal of Experimental Medicine 143, 1551.

    Article  PubMed  CAS  Google Scholar 

  • Kakinuma, K. (1970) Metabolic control and intracellular pH during phagocytosis by polymorphonuclear leukocytes. Journal of Biochemistry (Tokyo) 68, 177.

    CAS  Google Scholar 

  • Kijlstra, A., Daha, M.R. & L.A. van Es (1979) Role of complement on the processing of soluble immune complexes by isolated Kupffer cells. This volu

    Google Scholar 

  • Klebanoff, S.J. (1965) Inactivation of estrogen by rat uterine preparations. Endocrinology 76, 301.

    Article  PubMed  CAS  Google Scholar 

  • Lamers, M.C., Groot, E. de & D. Roos (1978) Unpublished observations.

    Google Scholar 

  • Lehninger, A.L. (1975) Biochemistry, 2nd ed., p. 497, New York. Worth Publ. Inc.

    Google Scholar 

  • Lehrer, R.I. (1970) The fungicidal activity of human monocytes: a myelo-peroxidase-linked mechanism. Clinical Research 18, 408A.

    Google Scholar 

  • Lehrer, R.I. (1972) Functional aspects of a second mechanism of candida-cidal activity by human neutrophils. Journal of Clinical Investigation 5, 2566.

    Article  Google Scholar 

  • Lehrer, R.I. (1975) The fungicidal mechanisms of human monocytes. I. Evidence for myeloperoxidase-linked and myeloperoxidase-independent candidacidal mechanisms. Journal of Clinical Investigation 55, 338.

    Article  PubMed  CAS  Google Scholar 

  • Loos, J.A. & H.K. Prins (1970) A mechanized system for the determination of ATP + ADP, 2,3-diphosphoglycerate, glucose 1,6-diphosphate and lactate in small amounts of blood cells. Biochimica et Biophysica Acta 201, 185.

    Article  PubMed  CAS  Google Scholar 

  • Meulen, F.W. van der, Reiss, M., Strieker, E.A.M., Elven, E.H. van & A.E.G. Kr. von dem Borne (1979) Cryopreservation of human monocytes. Submitted.

    Google Scholar 

  • Nathan, C.F., Karnovsky, M.L. & J.R. David (1971) Alterations of macrophage functions by mediators from lymphocytes. Journal of Experimental Medicine 133, 1356.

    Article  PubMed  CAS  Google Scholar 

  • Oers, M.H.J. van, Pinkster, J. & W.P. Zeijlemaker (1978) Cooperative effects in mitogenand antigen-induced responses of human peripheral blood lymphocyte subpopulations. International Archives of Allergy and Applied Immunology 58, 53.

    Article  Google Scholar 

  • Oren, R., Farnham, A.E., Saito, K., Milofsky, E. & M.L. Karnovsky (1963) Metabolic patterns in three types of phagocytizing cells. Journal of Cell Biology 17, 487.

    Article  PubMed  CAS  Google Scholar 

  • Pachman, L.M., Jayanetra, P. & R.M. Rothberg (1973) Rheumatoid sera and soluble complexes: nitroblue tetrazolium dye test and hexose mono-phosphate shunt activation. Pediatrics 52, 823.

    PubMed  CAS  Google Scholar 

  • Paglia, D.E. & W.N. Valentine (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine 70, 158.

    PubMed  CAS  Google Scholar 

  • Paul, B.B. & A.J. Sbarra (1968) The role of the phagocyte in host-parasite interactions. XIII. The direct quantitative estimation of H2O2 in phagocytizing cells. Biochimica et Biophysica Acta 156, 168.

    Article  PubMed  CAS  Google Scholar 

  • Reed, P.W. (1969) Glutathione and the hexose monophosphate shunt in phagocytizing and hydrogen peroxide-treated rat leukocytes. Journal of Biological Chemistry 244, 2459.

    PubMed  CAS  Google Scholar 

  • Reiss, M. & D. Roos (1978) Differences in oxygen metabolism of phago-cytosing monocytes and neutrophils. Journal of Clinical Investigation 61, 480.

    Article  PubMed  CAS  Google Scholar 

  • Rinehart, J.J., Lange, P., Gormus, B.J. & M.E. Kaplan (1978) Human monocyte-induced tumor cell cytotoxicity. Blood 52, 211.

    PubMed  CAS  Google Scholar 

  • Rodey, G.E., Park, B.H., Windhorst, D.B. & R.A. Good (1969) Defective bactericidal activity of monocytes in fatal granulomatous disease. Blood 33, 813.

    PubMed  CAS  Google Scholar 

  • Root, R.K. & J.A. Metcalf (1977) H2O2 release from human granulocytes during phagocytosis. Relationship to Superoxide anion formation and cellular catabolism of H2O2: studies with normal and cytochalasin B-treated cells. Journal of Clinical Investigation 60, 1266.

    Article  PubMed  CAS  Google Scholar 

  • Root, R.K., J.A. Metcalf, Oshino, N. & B. Chance (1975) H2O2release from human granylocytes during phagocytosis. I. Documentation, quantitation, and some regulating factors. Journal of Clinical Investigation 55, 945.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, F. & M. Zatti (1966) Effect of phagocytosis on the carbohydrate metabolism of polymorphonuclear leukocytes. Biochimica et Biophysica Acta 121, 110.

    Article  PubMed  CAS  Google Scholar 

  • Sagone Jr, A.L., King, G.W. & E.N. Metz (1976) A comparison of the metabolic response to phagocytosis in human granulocytes and monocytes. Journal of Clinical Investigation 57, 1352.

    Article  PubMed  CAS  Google Scholar 

  • Sbarra, A.J. & M.L. Karnovsky (1959) The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. Journal of Biological Chemistry 234, 1355.

    PubMed  CAS  Google Scholar 

  • Stanley, P.E. & S.G. Williams (1969) Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Analytical Biochemistry 29, 381.

    Article  PubMed  CAS  Google Scholar 

  • Steigbigel, R.T., Lambert Jr, L.H. & J.S. Remington (1974) Phagocytic and bactericidal properties of normal human monocytes. Journal of Clinical Investigation 53, 131.

    Article  PubMed  CAS  Google Scholar 

  • Stjernholm, R.L., Dimitrov, N.V. & L.J. Pijanowsky (1969) Carbohydrate metabolism in leukocytes. IX. Citric acid cycle activity in human neutrophils. Journal of the Reticuloendothelial Society 6, 194.

    PubMed  CAS  Google Scholar 

  • Stjernholm, R.L. & R.C. Manak (1970) Carbohydrate metabolism in leukocytes. XIV. Regulation of pentose cycle activity and glycogen metabolism during phagocytosis. Journal of the Reticuloendothelial Society 8, 550.

    PubMed  CAS  Google Scholar 

  • Stossel, T.P., Murad, F., Mason, R.J. & M. Vaughan (1970) Regulation of glycogen metabolism in polymorphonuclear leukocytes. Journal of Biological Chemistry 245, 6228.

    PubMed  CAS  Google Scholar 

  • Unanue, E.R. (1976) Secretory function of mononuclear phagocytes. American Journal of Pathology 83, 396.

    PubMed  CAS  Google Scholar 

  • Vildé, J.L., Lagrange, P., Vildé, F. & M.C. Blayo (1977) Some functional and metabolic properties of human monocyte-derived macrophages, in: F. Rossi, P.L. Patriarca & D. Romeo (eds), Movement, Metabolism and Bactericidal Mechanisms of Phagocytes, p. 347. Pavoda, Piccin Medical Books.

    Google Scholar 

  • Weening, R.S., Roos, D. & J.A. Loos (1974) Oxygen consumption of phago-cytizing cells in human leukocyte and granulocyte preparations: A comparative study. Journal of Laboratory and Clinical Medicine 83, 570.

    PubMed  CAS  Google Scholar 

  • Weening, R.S., Wever, R. & D. Roos (1975) Quantitative aspects of the production of Superoxide radicals by phagocytizing human granulocytes. Journal of Laboratory and Clinical Medicine 85, 245.

    PubMed  CAS  Google Scholar 

  • Weening, R.S., Roos, D., Schaik, M.L.J. van, Voetman, A.A., Boer, M. de & J.A. Loos (1977) The role of glutathione in the oxidative metabolism of phagocytic leukocytes. Studies in a family with glutathione reductase deficiency, in: F. Rossi, P.L. Patriarca & D. Romeo (eds), Movement, Metabolism and Bactericidal Mechanisms of Phagocytes, p. 277. Padova, Piccin Medical Books.

    Google Scholar 

  • Weibel, E.R. (1973) Stereological techniques for electron microscopic morphometry, in: M.A. Hayat (ed.), Principles and Techniques of Electron Microscopy. Biological applications, vol. 3, p. 237. New York, Van Nostrand Reinhold Comp.

    Google Scholar 

  • Wilkinson, P. (1979) The induction of chemotaxis and chemokinesis. This volume.

    Google Scholar 

  • Wintrobe, M.M., Lee, G.R., Boggs, D.R., Bithell, T.C., Athens, J.W. & J. Foerster (1974) Granulocytes and monocytes. Morphology and chemical properties, in: Clinical Haematology, 7th et., p. 228. Philadelphia, Lea and Febiger.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roos, D., van der Stijl-Neijenhuis, J.S., Klebanoff, S.J., Roos, D. (1980). The Oxygen Metabolism of Human Blood Monocytes and Neutrophils. In: van Furth, R. (eds) Mononuclear Phagocytes. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8793-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8793-7_47

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8795-1

  • Online ISBN: 978-94-009-8793-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics