Neurohypophysial hormones and their distribution in the brain

  • D. F. Swaab

Abstract

Arginine vasopressin is produced in the supraoptic nucleus (SON), paraventricular nucleus (PVN), and suprachiasmatic nucleus, and oxytocin in the SON and PVN. Neurosecretory fibres are found to terminate in neurohaemal organs and in extra hypothalamic area, while there is evidence of direct endings on the cerebral ventricles only in early brain development. In adulthood the neurohypophysial hormones in cerebrospinal fluid are thus considered to result rather from the removal of the hormones released in extra hypothalamic brain area than from direct terminations on the ventricular surface. The release of neurohypophysial hormones in extra hypothalamic area seems to take place via peptidergic synapses. Neurohypophysial hormones and exohypothalamic pathways are present early in fetal life, and are thought to be involved in brain development. Peptide transmitters may thus play an essential role both in brain maturation and in central processes in adult life.

Keywords

Serotonin Arginine Catecholamine Vasopressin Oxytocin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antunes, J. L., Carmel, P. W. and Zimmerman, E. A. (1977). Projections from the paraventricular nucleus to the zona externa of the median eminence of the rhesus monkey: an immunohisto-chemical study. Brain Res., 137, 1PubMedCrossRefGoogle Scholar
  2. Armstrong, W. E., Hatton, G. I. and Meill, T. H. (1979). Distribution of projection neurons in the rat paraventricular nucleus. Presented at the Anatomy Meetings, April and May, Miami, USA (Abstract)Google Scholar
  3. Aspeslagh, M.-R., Vandesande, F. and Dierickx, K. (1976). Electron microscopic immunocyto-chemical demonstration of separate neurophysin-vasopressinergic and neurophysin-oxy-tocinergic nerve fibres in the neural lobe of the rat hypophysis. Cell Tiss. Res., 171, 31CrossRefGoogle Scholar
  4. Bailey, W. H. and Weiss, J. M. (1979). Evaluation of a ‘memory deficit’ in vasopressin-deficient rats. Brain Res., 162, 174PubMedCrossRefGoogle Scholar
  5. Barry, J. (1956). De l’existence probable de synapses interneuronales de type ‘neurosécretoiré’. In J. Ariëns Kappers (ed.), Progress in Neurobiology, pp. 36–44. (Amsterdam: Elsevier)Google Scholar
  6. Blume, H. W., Pittman, Q. J. and Renaud, L. P. (1978). Electrophysiological indications of a ‘vasopressinergic’ innervation of the median eminence. Brain Res., 155, 153PubMedCrossRefGoogle Scholar
  7. Boer, G. J., Swaab, D. F., Uylings, H. B. M., Boer, K., Buijs, R. M. and Velis, D. N. (1980). Neuropeptides in rat brain development. In P. McDonnell et al. (eds.), Adaptive Capabilities of the Nervous System. Progress in Brain Research, vol. 54. (Amsterdam: Elsevier) (In press)Google Scholar
  8. Boer, G. J., Uylings, H. B. M., van Rheenen-Verberg, C. M. F. and Fisser, B. (1978). Postnatal brain development in rats with hereditary diabetes insipidus (Brattleboro strain). In G. Dorner and M. Kawakami (eds.), Hormones and Brain Development, pp. 253–258. (Amsterdam: Elsevier/North-Holland)Google Scholar
  9. Boer, K., Swaab, D. F. and Visser, M. (1979). The fetal brain and parturition. Anim. Repr. Sci., 2, 63CrossRefGoogle Scholar
  10. Buijs, R. M. (1978). Intra-and extra-hypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tiss. Res., 192, 423CrossRefGoogle Scholar
  11. Buijs, R. M. and Swaab, D. F. (1979). Immunoelectronmicroscopical demonstration of vasopressin and oxytocin synapses in the rat limbic system. Cell Tiss. Res., 204, 355CrossRefGoogle Scholar
  12. Buijs, R. M., Swaab, D. F., Dogterom, J. and van Leeuwen, F. W. (1978). Intra-and extra-hypothalamic vasopressin and oxytocin pathways in the rat. Cell Tiss. Res., 186, 423CrossRefGoogle Scholar
  13. Castel, M. (1978). Immunocytochemical evidence for vasopressin receptors. J. Histochem. Cytochem., 26, 581PubMedCrossRefGoogle Scholar
  14. Celestian, J. F., Carey, R. J. and Miller, M. (1975). Unimpaired maintenance of a conditioned avoidance response in the rat with diabetes insipidus. Physiol. Behav., 15, 707PubMedCrossRefGoogle Scholar
  15. Cooper, K. E., Kasting, N. W., Lederis, K. and Veale, W. L. (1979). Evidence supporting a role for endogenous vasopressin in natural suppression of fever in the sheep.J. Physiol., 295, 33PubMedGoogle Scholar
  16. Cushing, H. (1932). Posterior-pituitary hormone and parasympathetic apparatus. In Papers Relating to the Pituitary Body, Hypothalamus and Parasympathetic Nervous System, pp. 59–111. (Springfield: Charles C. Thomas)Google Scholar
  17. Defendini, R. and Zimmerman, E. A. (1978). The magnocellular neurosecretory system of the mammalian hypothalamus. In S. Reichlin, R. J. Baldesarini and J. B. Martin (eds.), The Hypothalamus, pp. 137–152. (New York: Raven Press)Google Scholar
  18. Diericky, K. and Vandesande, F. (1977). Immunocytochemical localization of the vasopressinergic and the oxytocinergic neurons in the human hypothalamus. Cell Tiss. Res., 184, 15Google Scholar
  19. Dogterom, J. (1977). The release and presence of vasopressin in plasma and cerebrospinal fluid as measured by radioimmunoassay; studies on vasopressin as a mediator of memory processes in the rat. Ph.D. thesis, State University of UtrechtGoogle Scholar
  20. Dogterom, J. and Buijs, R. M. (1980). Vasopressin and oxytocin distribution in rat brain: radioimmunoassay and immunocytochemical studies. In Ajmone Marsan, C. and Traczyk, W. Z. (eds.), Neuropeptides and Neural Transmission, pp. 307–314. (New York: Raven Press)Google Scholar
  21. Dogterom, J., Snijdewint, F. G. M. and Buijs, R. M. (1978). The distribution of vasopressin and oxytocin in the rat brain. Neurosci. Lett., 9, 341PubMedCrossRefGoogle Scholar
  22. Dogterom, J., Snijdewint, F. G. M., Pevet, P. and Buijs, R. M. (1979). On the presence of neuropeptides in the mammalian pineal gland and subcommissural organ. In J. Ariëns Kappers and P. Pevet (eds.), The Pineal Gland of Vertebrates, including Man. Progress in Brain Research, vol. 52, pp. 465–470. (Amsterdam: Elsevier)Google Scholar
  23. Dogterom, J., Snijdewint, F. G. M., Pevet, P. and Swaab, D. F. (1980). Studies on the presence of vasopressin, oxytocin and vasotocin in the pineal gland, subcommissural organ and foetal pituitary gland: failure to demonstrate vasotocin in mammals. J. Endocrinol ., 84, 115PubMedCrossRefGoogle Scholar
  24. Dube, D., Leclerc, R. and Pelletier, G. (1976). Electron microscopic immunohistochemical localization of vasopressin and neurophysin in the median eminence of normal and adrena-lectomized rats. Am. J. Anat., 147, 103PubMedCrossRefGoogle Scholar
  25. Fellmann, D., Bloch, B., Bugnon, C. and Lenys, D. (1979). Étude immunocytologique de la maturation des axes neuroglandulaires hypothalamo-neurohypophysaires chez le foetus humain. J. Physiol. (Paris), 75, 37Google Scholar
  26. Gähwiler, B. H., Sandoz. P. and Dreifuss, J. J. (1978). Neurones with synchronous bursting discharges in organ cultures of the hypothalamic supraoptic nucleus area. Brain Res., 151, 245PubMedCrossRefGoogle Scholar
  27. George, J. M. (1978). Immunoreactive vasopressin and oxytocin: concentration in individual human hypothalamic nuclei. Science, 200, 342PubMedCrossRefGoogle Scholar
  28. Hosoya, Y. and Matsushita, M. (1979). Identification and distribution of the spinal and hypophysial projection neurons in the paraventricular nucleus of the rat. A light and electron microscopic study with the horseradish peroxidase method. Exp. Brain Res., 35, 315PubMedCrossRefGoogle Scholar
  29. Joseph, S. A. and Knigge, K. M. (1978). The endocrine hypothalamus: recent anatomical studies. In S. Reichlin, R. J. Baldessarini and J. B. Martin (eds.), The Hypothalamus, pp. 15–47. (New York: Raven Press)Google Scholar
  30. Knigge, K. M., Joseph, S. A. and Hoffman, G. E. (1978). Organization of LRF-and SRIF-neurons in the endocrine hypothalamus. In S. Reichlin, R. J. Balessarini and J. B. Martin (eds.), The Hypothalamus, pp. 49–67. (New York: Raven Press)Google Scholar
  31. Landgraf. R. Ermisch, A. and Hess, J. (1979). Indications for a brain uptake of labelled vasopressin and oxytocin and the problem of the blood-brain barrier. Endokrinologie, 73, 77PubMedGoogle Scholar
  32. van Leeuwen, F. W., de Raay, C., Swaab, D. F. and Fisser, B. (1979). The localization of oxytocin, vasopressin, somatostatin and luteinizing hormone in the rat neurohypophysis. Cell Tiss. Res., 202, 189CrossRefGoogle Scholar
  33. van Leeuwen, F. W. and Swaab, D. F. (1977). Specific immunoelectronmicroscopic localization of vasopressin and oxytocin in the neurohypophysis of the rat. Cell Tiss. Res., 177, 493CrossRefGoogle Scholar
  34. van Leeuwen, F. W., Swaab, D. F. and de Raay, C. (1978). Immunoelectronmicroscopic localization of vasopressin in the rat suprachiasmatic nucleus. Cell Tiss. Res., 193, 1CrossRefGoogle Scholar
  35. van Leeuwen, F. W., Swaab, D. F. and Romijn, H. J. (1976). Light and electron microscopic localization of oxytocin and vasopressin in rats. In G. Feldmann, P. Druet, J. Bignon and S. Avrameas (eds.), Immunoenzymatic Techniques, pp. 345–353. (Amsterdam: North-Holland)Google Scholar
  36. Makara, G. B., Harris, M. C. and Spyer, K. M. (1972). Identification and distribution of tuberoinfundibular neurones. Brain Res., 40, 283PubMedCrossRefGoogle Scholar
  37. Ono, T., Nishino, H., Sasaka, K., Muramoto, K., Yano, I. and Simpson, A. (1978). Paraventricular nucleus connections to spinal cord and pituitary. Neurosci. Lett., 10, 141PubMedCrossRefGoogle Scholar
  38. Palkovits, M., Zaborszky, L. and Ambach, G. (1974). Accessory neurosecretory cell groups in the rat hypothalamus. Acta Morphol. Acad. Sci. Hung., 22, 21PubMedGoogle Scholar
  39. Pavel, S. (1978). Arginine vasotocin as a pineal hormone. J. Neural. Trans., 13 (suppl.), 135Google Scholar
  40. Pavel, S. (1975). Vasotocin biocynthesis by neurohypophysial cells from human fetuses. Evidence for its ependymal origin. Neuroendocrinology, 19, 150PubMedCrossRefGoogle Scholar
  41. Popa, G. T. (1938). Neurotropic principles in the sheep hypophysis including a ‘cerebro-stimuline’ Academia Româna. Mem. Sect. Stiintif Séria III. Tom. XIII. Mem. 6Google Scholar
  42. Rodriguez, E. M. (1976). The cerebrospinal fluid as a pathway in neuroendocrine integration. J. Endocrinol., 71, 407PubMedCrossRefGoogle Scholar
  43. Rosenbloom. A. A. and Fisher. D. A. (1975). Radioimmunoassayable AVT and AVP in adult mammalian brain tissue: comparison of normal and Brattleboro rats. Neuro endocrinology, 17, 354Google Scholar
  44. Rozengurt, E., Legg, A. and Pettican, P. (1979). Vasopressin stimulation of mouse 3T3 cell growth.Proc. Natl. Acad. Sci., USA , 76, 1284PubMedCrossRefGoogle Scholar
  45. Scharrer, E. and Scharrer, B. (1940). Secretory cells within the hypothalamus. In The Hypothalamus and Central Levels of Autonomic Function, vol. xx, pp. 170–194. (Publication of the ARNMD) (Baltimore: Williams & Wilkins)Google Scholar
  46. Schober, F. (1978). Darstellung der neurosekretorischen hypothalamo-rhombenzephalen Verbindung bei der Ratte durch retrograden axonalen Transport von Meerrettich-Peroxidase. Acta Biol. Med. Germ., 37, 165PubMedGoogle Scholar
  47. Schot, L. P. C., Boer, H. H. and Swaab, D. F. (1979). Peptidergic neurons in the pond snail, Lymnaea stagnalis. Presented at the 11th Summer School of Brain Research Adaptive Capabilities of the Nervous System August 13–17, AmsterdamGoogle Scholar
  48. Sherlock, D. A., Field, P. M. and Raisman, G. (1975). Retrograde transport of horseradish peroxidase in the magnocellular neurosecretory system of the rat. Brain Res., 88, 403PubMedCrossRefGoogle Scholar
  49. Sterba, G. (1974). Das oxytocinerge neurosekretorische System der Wirbeltiere, Beitrag zu einem erweiterten Konzept. Zool. Jb. Physiol., 78, 409Google Scholar
  50. Swaab, D. F., Boer, G. J., Boer, K., Dogterom, J., van Leeuwen, F. W. and Visser, M. (1978). Fetal neuroendocrine mechanisms in development and parturition. In M. A. Corner, R. E. Baker, N. E. van de Poll, D. F. Swaab and H. B. M. Uylings (eds.), Maturation of the Nervous System. Progress in Brain Research, vol. 48, pp. 277–289. (Amsterdam: Elsevier)CrossRefGoogle Scholar
  51. Swaab, D. F. and Pool, C. W. (1975). Specificity of oxytocin and vasopressin immunofluorescence. J. Endocrinol., 66, 263PubMedCrossRefGoogle Scholar
  52. Swaab, D. F., Pool, C. W. and Nijveldt, F. (1975a). Immunofluorescence of vasopressin and oxytocin in the rat hypothalamo-neurohypophysial system. J. Neural Trans., 36, 195CrossRefGoogle Scholar
  53. Swaab, D. F., Nijveldt, F. and Pool, C. W. (1975b). Distribution of oxytocin and vasopressin in the rat supraoptic and paraventricular nucleus. J. Endocrinol., 67, 461PubMedCrossRefGoogle Scholar
  54. Swanson, L. W. and Cowan, W. M. (1975). The efferent connections of the suprachiasmatic nucleus of the hypothalamus. J. Comp. Neurol., 160, 1PubMedCrossRefGoogle Scholar
  55. Tanaka, M., de Kloet, E. R., de Wied, D. and Versteeg, D. H. G. (1977). Arginine8-vasopressin affects catecholamine metabolism in specific brain nuclei. Life Sci., 20, 1799PubMedCrossRefGoogle Scholar
  56. Vandesande, F. and Dierickx, K. (1979). The activated hypothalamic magnocellular neurosecretory system and the one neuron-one neurohypophysial hormone concept. Cell Tiss. Res., 200, 29CrossRefGoogle Scholar
  57. Vandesande, F. and Dierickx, K. (1975). Identification of the vasopressin-producing and of the oxytocin-producing neurons in the hypothalamic magnocellular neurosecretory system of the rat. Cell Tiss. Res., 164, 153CrossRefGoogle Scholar
  58. Vandesande, F., Dierickx, K. and de Mey, J. (1977). The origin of the vasopressinergic and oxytocinergic fibres of the external region of the median eminence of the rat hypophysis. Cell Tiss. Res., 180, 443CrossRefGoogle Scholar
  59. Vandesande, F., Dierickx, K. and de Mey, J. (1975). Identification of the vasopressin-neuro-physin-producing neurons of the rat suprachiasmatic nuclei. Cell Tiss. Res., 156, 377Google Scholar
  60. Velis, D. N., Buijs, R. M. and Swaab, D. F. (1979). Neurosecretory cells and their exohypo-thalamic fibers in rat brain development. Presented at the 11th International Summer School of Brain Research Adaptive Capabilities of the Nervous System August 13–17, AmsterdamGoogle Scholar
  61. Visser, M. and Swaab, D. F. (1979). Life span changes in the presence of α-melanocyte stimulating hormone containing cells in the human pituitary. J. Dev. Physiol., 1, 161PubMedGoogle Scholar
  62. de Wied, D. (1965). The influence of the posterior and intermediate lobe of the pituitary and pituitary peptides on the maintenance of a conditioned avoidance response in rats. Int. J. Pharmacol. 4 157Google Scholar
  63. de Wied, D., Bohus, B. and van Wimersma Greidanus, T. B. (1975). Memory deficit in rats with hereditary diabetes insipidus. Brain Res., 85, 152CrossRefGoogle Scholar
  64. van Wimersma Greidanus, T. B., Dogterom, J. and de Wied, D. (1975). Intraventricular administration of anti-vasopressin serum inhibits memory consolidation in rats. Life Sci., 16, 637Google Scholar
  65. Zimmerman, E. A., Carmel, P. W., Husain, M. K., Ferin, M., Tannenberg, M., Frantz, A. G. and Robinson, A. G. (1973). Vasopressin and neurophysin: high concentrations in monkey hypophysial portal blood. Science, 182, 925PubMedCrossRefGoogle Scholar

Copyright information

© MTP Press Limited 1980

Authors and Affiliations

  • D. F. Swaab
    • 1
  1. 1.Nederlands Instituut voor Hersenonderzoek (Netherlands Institute for Brain Research)AmsterdamThe Netherlands

Personalised recommendations