Salt Lakes pp 59-69 | Cite as

Microbiology of the Great Salt Lake north arm

  • F. J. Post
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 5)

Abstract

The Great Salt Lake, Utah, Fig. 6.1, is a fairly shallow (10m) terminal lake consisting of two arms of greatly different salinity separated by a rock fill railroad causeway. Although the causeway was constructed of loose fill with two culverts (Gwynn 1980) to permit exchange of water between the two arms, at present there is very little real water return southward, most of it moves to the north. Salt has migrated to the north arm along with the water reducing the south arm salinity to about one third that of the north arm. Some north arm water has returned to the south forming a dense brine layer about 7 m below the surface. The difference in densities between the two layers (1.076 and 1.164) prevents circulation which excludes oxygen resulting in an anoxic dense brine layer similar to one in the Dead Sea (Nissenbaum 1975) containing hydrogen sulfide (Gwynn 1980). Little is known about the microbiology of this layer. Most of the work reported in this paper has been done in the hypersaline north arm.

Keywords

Biomass Clay Methane Chlorophyll Sodium Chloride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayley, S. T. & Morton, R. A., 1978. Recent developments in the molecular biology of extremely halophilic bacteria. CRC Critical Reviews in Microbiology, 6 (2): 151–205.PubMedCrossRefGoogle Scholar
  2. Ben-Amotz, A., 1978. On the mechanisms of osmoregulation in Dunaliella. In: S. R. Caplan and M. Ginzburg (eds.) Energetics and Structure of Halophilic Microorganisms. Elsevier/North Holland Biomedical Press, New York.Google Scholar
  3. Brock, T. D., 1975. Salinity and the ecology of Dunaliella from Great Salt Lake. J. gen. Microbiol. 85: 285–292.Google Scholar
  4. Brock, T. D., 1976. Halophilic blue-green algae. Arch. Microbiol. 107: 109–111.PubMedCrossRefGoogle Scholar
  5. Brown, A. D., 1976. Microbial water stress. Bact. Rev. 40: 803–846.PubMedGoogle Scholar
  6. Burdyl, P. & Post, F. J., 1979. Survival of Escherichia coli in Great Salt Lake water. Int. J. Water, Soil, Air Pollution, 12: 237–246.CrossRefGoogle Scholar
  7. Carozzi, A. V., 1962. Observations on algal biostromes in the Great Salt Lake, Utah. J. Geol. 70: 246–252.Google Scholar
  8. Collins, N. F., 1977. A preliminary investigation of the lipid of halophilic bacteria as a food additive. M.Sc. Thesis, Utah State University, Logan, Utah.Google Scholar
  9. Crane, Jr. J. L., 1974. Characterization of selected bacteria from the north arm of the Great Salt Lake. M.Sc. Thesis, Utah State University, Logan, Utah.Google Scholar
  10. Cronin, E. A. & Post, F. J., 1977. Report of a dematiaceous hyphomycete from the Great Salt Lake, Utah Mycologia, 69: 846–847.CrossRefGoogle Scholar
  11. Danon, A. & Caplan, S. R., 1977. CO2 fix by Halo- bacterium halobium. FEBS Letters, 74: 255–258.PubMedCrossRefGoogle Scholar
  12. Degani, H., Bach, D., Danon, A., Garty, H., Eisenbach, M. & Caplan, S. R., 1978. Phase transition of the lipids of Halobacteriumhalobium. In:S. R. Caplanand M.Ginzburg (eds) Energetics and Structures of Halophilic Microorganisms. Elsevier/North Holland Biomedical Press, New York.Google Scholar
  13. Dundas, I. E. D., 1977. Physiology of Halobacteriaceae. In: A. H.Rose and D. W. Tempest (eds.) Advances in Microbial Ecology. Vol. 15. Academic Press, New York.Google Scholar
  14. Eugster, H. P. & Hardie, L. A., 1978. Saline Lakes. In: A. Lerman (ed.) Lakes: Chemistry, Geology, Physics. Springer-Verlag, New York.Google Scholar
  15. Ginzburg, M., 1978. Ion metabolism in whole cells of Halobacterium halobium and H. marismortui. In: S. R. Caplan and M. Ginzburg (eds.) Energetics and Structure of Halophilic Microorganisms. Elsevier/North Holland Biomedical Press, New York.Google Scholar
  16. Greer, D. C., 1977. Desertic Terminal Lakes. In: D. C. Greer (ed.) Desertic Terminal Lakes. Utah Water Research Laboratory, Utah State University, Logan.Google Scholar
  17. Gwynn, J, A. (ed.), 1980. Great Salt Lake: A Scientific, Historical and Economic Overview. Bulletin No. 116. Utah Geological and Mineral Survey, Salt Lake City, Utah.Google Scholar
  18. Hem, J, D., 1970. Study and Interpretation of the chemical characteristics of natural water. Second edition. U.S. Geol. Surv. Water-Supply Pap., 1473.Google Scholar
  19. Kushner, D. J., 1978. Life in high salt and solute concentrations: Halophilic bacteria, In: D. J. Kushner (ed.) Microbial Life in Extreme Environments. Academic Press, New York.Google Scholar
  20. May, S. O., 1978. The effect of various environmental factors on the growth of a red pigmented Dunaliella species from the Great Salt Lake. M.Sc. Thesis, Utah State University, Logan, Utah.Google Scholar
  21. Nissenbaum, A., 1975. The microbiology and biogeochemistry of the Dead Sea. Microbial Ecol. 2: 139–161.CrossRefGoogle Scholar
  22. Nissenbaum, A., 1979. Life in a Dead Sea-Fables, Allegories, and Scientific search. Bioscience, 29: 153–157.CrossRefGoogle Scholar
  23. Post, F. J., 1975. Life in the Great Salt Lake. Utah Science, 36: 43–47.Google Scholar
  24. Post, F. J., 1977a. The microbial ecology of the Great Salt Lake. Microbial Ecol. 3: 143–165.CrossRefGoogle Scholar
  25. Post, F. J., 1977b. The microbial ecology of the Great Salt Lake north arm. In: D. C. Greer (ed.) Desertic Terminal Lakes. Utah Water Research Laboratory, Utah State University, Logan.Google Scholar
  26. Post, F. J., 1979. Laboratory Manual for Aquatic Microbiology. Biology Department, Utah State University, Logan, Utah.Google Scholar
  27. Post, F. J., 1980. Biology of the north arm. In: J. W. Gwynn (ed.) Great Salt Lake: A Scientific, Historical and Economic Overview. Bulletin No. 116. Utah Geological and Mineral Survey, Salt Lake City, Utah.Google Scholar
  28. Post, F. J. & Youssef, N. N., 1977. A procaryotic intracellular symbiont of the Great Salt Lake brine shrimp Artemia salina. Can. J. Microbiol. 23: 1232–1236.PubMedCrossRefGoogle Scholar
  29. Stube, J. C., Post, F. J. & Procella, D. B., 1976. Nitrogen cycling in microcosms and application to the biology of the north arm of the Great Salt Lake. Publication No. PRJSBA-016-1, Utah Water Research Laboratory, Utah State University, Logan, Utah.Google Scholar
  30. Tayler, P. L., Hutchinson, L. A. & Muir, M. K., 1977. Heavy metals in the Great Salt Lake, Utah. Utah Geol. 4: 19–28.Google Scholar
  31. Tomlinson, G. A. & Hotchstein, L. I., 1976. Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium. Can. J. Microbiol. 22: 587–591.PubMedCrossRefGoogle Scholar
  32. Utah state division of health, 1977. Chemical Data for the Great Salt Lake for 1977. Unpublished data from the Utah State Division of Health.Google Scholar
  33. Van Auken, O. W. & McNulty, I. B., 1973. The effect of environmental factors on the growth of a halophilic species of algae. Biol. Bull. mar. biol. Lab., Woods Hole, 145: 210–222.CrossRefGoogle Scholar
  34. Ward, D. M. & Brock, T. D., 1978. Hydrocarbon biodégradation in hypersaline environments. Appl. Environ. Microbiol. 35: 353–359.PubMedGoogle Scholar
  35. Woese, C. R., Margrum, L. J. & Fox, G. E., 1978. Archaebacteria. J. molec. Evolution, 11: 245–252.CrossRefGoogle Scholar

Copyright information

© Dr W. Junk Publishers, The Hague 1981

Authors and Affiliations

  • F. J. Post
    • 1
  1. 1.Dept. of Biology, and Utah Water Research Lab.Utah State UniversityLoganUSA

Personalised recommendations