Skip to main content

Primary production in saline lakes

A review

  • Conference paper
Salt Lakes

Part of the book series: Developments in Hydrobiology ((DIHY,volume 5))

Abstract

For more than fifty years man has been trying to measure primary production rates of waters varying from fresh to saline and from inland to marine. From indirect methods such as phytoplankton counts and measurement of chlorophyll concentrations to direct methods employing oxygen and carbon-14 light and dark bottle techniques and even diurnal oxygen changes, scientists have attempted to ascertain the actual and potential productivity of aquatic ecosystems. Not only has there been the problem of what a particular technique is actually measuring, there has also been the problem of how accurately the measurement represents the dynamics of the real system. Considerable controversy has always been associated with the choice of method, the frequency of measurement, the length of production incubations, and the comparison of results employing different methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleem, A. A. & Samaan, A. A., 1969a. Poductivity of Lake Mariut, Egypt. Part I. Physical and chemical aspects. Int. Revue ges. Hydrobiol. 54: 313–355.

    Article  CAS  Google Scholar 

  • Aleem, A. A. & Samaan, A. A., 1969b. Productivity of Lake Mariut, Egypt. Part II. Primary production. Int. Revue ges. Hydrobiol. 54: 491–527.

    Article  Google Scholar 

  • Armstrong, R., Anderson, D. W. & Callender, E., 1966. Primary productivity at Devils Lake, North Dakota. Proc. North Dakota Acad. Sci. 20: 136–149.

    Google Scholar 

  • Cohen, Y., Krumbein, W. A., Goldberg, M. & Shilo, M., 1977a. Solar lake (Sinai). 1. Physical and chemical limnology. Limnol. Oceanogr. 22: 597–608.

    Article  CAS  Google Scholar 

  • Cohen, Y., Krumbein, W. E. & Shilo, M., 1977b. Solar Lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnol. Oceanogr. 21: 609–620.

    Article  Google Scholar 

  • Cohen, Y., Krumbein, W. E. & Shilo, M., 1977c. Solar Lake (Sinai). 3. Bacterial distribution and production. Limnol. Oceanogr. 22: 621–634.

    Article  CAS  Google Scholar 

  • Dubinsky, Z. & Berman, T., 1976. Light utilization efficiencies of phytoplankton in Lake Kinneret (Sea of Galilee). Limnol. Oceanogr. 21: 226–230.

    Article  CAS  Google Scholar 

  • Hammer, U. T., 1978. The saline lakes of Saskatchewan. III. Chemical characterization. Int. Revue ges. Hydrobiol. 63: 311–335.

    Article  CAS  Google Scholar 

  • Hammer, U. T. (1980). 5.10. Geographical variations, p. 235–236. In: E. D. Le Cren & R. H. Lowe-McConnell (eds.) The Functioning of Freshwater Ecosystems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hammer, U. T. & Haynes, R. C., 1978. The saline lakes of Saskatchewan. II. Locale, hydrography and other physical aspects. Int. Revue ges. Hydrobiol. 63: 179–203.

    Article  Google Scholar 

  • Hammer, U. T., Haynes, R. C., Lawrence, J. F. & Swift, M. C., 1978. Meromixis in Waldsea Lake, Saskatchewan. Verh. int. Ver. Limnol. 20: 192–200.

    Google Scholar 

  • Hammer, U. T., Walker, K. F. & Williams, W. D., 1973. Derivation of daily phytoplankton production estimates from short-term experiments in some shallow, eutrophic Australian saline lakes. Aust. J. Mar. Freshwat. Res. 24: 259–266.

    Article  Google Scholar 

  • Haynes, R. C. & Hammer, U. T., 1978. The saline lakes of Saskatchewan. IV. Primary production of phytoplankton in selected saline ecosystems. Int. Revue ges. Hydrobiol. 63: 337–351.

    Article  Google Scholar 

  • Lawrence, J. R., Haynes, R. C. & Hammer, U. T. 1978. Contribution of photosynthetic green sulfur bacteria to total primary production in a meromictic saline lake. Verh. int. Ver. Limnol. 20: 201–207.

    Google Scholar 

  • Melack, J. M., 1979. Photosynthetis and growth of Spirulina platensis (Cyanophyta) in an equatorial lake (Lake Simbi, Kenya). Limnol. Oceanogr. 24: 753–760.

    Article  Google Scholar 

  • Melack, J. M. & Kilham, P., 1974. Photosynthetic rates of phytoplankton in East African alkaline, saline lakes. Limnol. Oceanogr. 19: 743–755.

    Article  CAS  Google Scholar 

  • Prosser, M. V., Wood, R. B. & Baxter, R. M., 1968. The Bishoftu Crater Lakes: A bathymetric and chemical study. Arch. Hydrobiol. 65: 309–324.

    Google Scholar 

  • Rodhe, W., 1969. Crystallization of eutrophication concepts in Northern Europe, p. 50–64. In: Eutrophication: Causes, Consequences, Correctives. National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Schindler, D. W. & Holmgren, S. K., 1971. Primary production and phytoplankton in the experimental lakes area, northwestern Ontario, and other low-carbonate waters, and a liquid scintillation method for determining 14C activity in photosynthesis. J. Fish. Res. Bd Can. 28: 189–201.

    Article  Google Scholar 

  • Stephens, D. W. & Gillespie, D. M., 1976. Phytoplankton production in the Great Salt Lake, Utah, and a laboratory study response to enrichment, Limnol. Oceanogr. 21: 74–87.

    Article  CAS  Google Scholar 

  • Tailing, J. F., Wood, R. B., Prosser, M. V. & Baxter, R. M., 1973. The upper limit of photosynthetic productivity of phytoplankton: evidence from Ethiopian soda lakes. Freshwater Biol. 3: 53–76.

    Article  Google Scholar 

  • Tilzer, M. M., Goldman, C. R. & De Amezaga, E., 1975. The efficiency of photosynthetic light energy utilization by lake phytoplankton. Verh. int. Ver. Limnol. 19: 800–807.

    Google Scholar 

  • Vollenweider, R. A. & Nauwerck, A., 1961. Some observations on the C14 method for measuring primary production. Verh. int. Ver. Limnol. 14: 134–139.

    Google Scholar 

  • Waite, D. T., 1970. Some factors affecting phytoplankton primary production in three Saskatchewan lakes. M.Sc. Thesis, University of Saskatchewan.

    Google Scholar 

  • Walker, K. F., 1973. Studies on a saline lake ecosystem. Aust. J. Mar. Freshwat. Res. 24: 21–71.

    Article  CAS  Google Scholar 

  • Walker, K. F., 1975. The seasonal phytoplankton cycles for two saline lakes in central Washington. Limnol Oceanogr. 20: 40–53.

    Article  Google Scholar 

  • Wetzel, R. G., 1964. A comparative study of the primary productivity of higher aquatic plants, periphyton and phytoplankton in a large, shallow lake. Int. Rev. ges. Hydrobiol. 49: 1–61.

    Article  Google Scholar 

  • Wetzel, R. G., 1975. Limnology. Saunders, Toronto.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Dr W. Junk Publishers, The Hague

About this paper

Cite this paper

Hammer, U.T. (1981). Primary production in saline lakes. In: Williams, W.D. (eds) Salt Lakes. Developments in Hydrobiology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8665-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8665-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8667-1

  • Online ISBN: 978-94-009-8665-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics