Skip to main content

Chromatic Signals in the Visual Pathway of the Domestic Cat

  • Chapter
Visual Pathways

Part of the book series: Documenta Ophthalmologica Proceedings Series ((DOPS,volume 27))

  • 75 Accesses

Abstract

Recordings from the cornea (ERG) and optic nerve (ONR) in the arterially perfused cat eye as well as in vivo from the visual cortex (VECP) revealed a rod (500 nm) mechanism and two clearly distinct cone mechanisms with sensitivity maxima near 460 and 560 nm, when strong selective chromatic adaptation was applied. However, the action spectra obtained during the first seconds of dark adaptation had a sensitivity maximum near 510 nm and came spectrally close to a rod action spectrum. It became apparent that a 510 nm mechanism was present during strong purple adaptation light, when rods were clearly saturated. This mechanism was able to follow flicker as high as 38 c/s; it could be found in the cone dominated VECP recordings; in the ERG it produced cone-like responses of short latency with pronounced a-waves and off-responses; it showed steep V-log I functions, different from rods, and followed the cone branch of the dark adaptation curve. Its spectrum could not be matched by any weighted addition of a 460 nm and 560 nm pigment nomogram. Apparently in cat under photopic conditions, besides a 460 and a 560 nm cone mechanism, a 510 nm mechanism is active which differs in many respects from rods. When strong white or yellow adapting lights are used, opponent-like interactions between these three mechanisms can be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cleland, B. G. & Levick, W. R. Properties of rarely encountered types of ganglion cells in the cat’s retina and an overall classification. J. Physiol. 240: 457–492 (1974).

    PubMed  CAS  Google Scholar 

  • Conner, J. D. & MacLeod, D. I. A. Rod photoreceptors detect rapid flicker. Science 195: 698–699 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Dartnall, H. J. A. The interpretation of spectral sensitivity curves. Brit. Med. Bull. 9: 24–30 (1953).

    PubMed  CAS  Google Scholar 

  • De Valois, R. L., Abramov, I. & Jacobs, G. H. Analysis of response patterns of LGN cells. J. Opt. Soc. Am. 56: 966–977 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Dodt, E. & Elenius, V. Change of threshold during dark adaptation measured with orange and blue light in cats and rabbits. Experientia 16: 313 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Dodt, E. & Enroth, Ch. Retinal flicker response in cat. Acta Physiol. Scand. 30: 375–390 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Dodt, E. & Walther, J. B. Netzhautsensitivität, Linsenabsorption und physikalische Lichtstreuung. Der skotopische Dominator der Katze im sichtbaren und ultravioletten Spektralbereich. Pflügers Arch. 266: 167–174 (1958a).

    Google Scholar 

  • Dodt, E. & Walther, J. B. Photopic sensitivity mediated by visual purple. Experientia. 14: 142 (1958b).

    Google Scholar 

  • Donner, K. O. The spike frequencies of mammalian retinal elements as a function of wave-length of light. Acta Physiol. Scand. Suppl. 21: 1–59 (1950).

    Article  Google Scholar 

  • Doty, R. W. Potentials evoked in cat cerebral cortex by diffuse and by punctiform photic stimuli. J. Neurophysiol. 21: 437–464 (1958).

    PubMed  CAS  Google Scholar 

  • Enroth, Ch. The mechanism of flicker and fusion studied on single retinal elements in the dark-adapted eye of the cat. Acta Physiol. Scand. Suppl. 27: 1–67 (1952).

    PubMed  CAS  Google Scholar 

  • Enroth-Cugell, Ch. & Shapley, R. M. Adaptation and dynamics of cat retinal ganglion cells. J. Physiol. 233, 271–309 (1973).

    PubMed  CAS  Google Scholar 

  • Gouras, P. Identification of cone mechanisms in monkey ganglion cells. J. Physiol. 199: 533–547 (1968).

    PubMed  CAS  Google Scholar 

  • Gouras, P. Electroretinography: Some basic principles. Invest. Ophthal. 9: 557–569 (1970).

    PubMed  CAS  Google Scholar 

  • Gouras, P. & Hoff, M. Retinal function in an isolated, perfused mammalian eye. Invest. Ophthal. 9: 388–399 (1970).

    PubMed  CAS  Google Scholar 

  • Gouras, P. & Zrenner, E. Enhancement of luminance flicker by color-opponent mechanisms. Science 205: 587–589 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Granit, R. The organization of the vertebrate retinal elements. In: Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie (Ed. O. Krayer, E. Lehnartz, A.v. Muralt & F. H. Rein. Springer, Berlin. 31–70 (1950).

    Chapter  Google Scholar 

  • Green, D. G. & Siegel, I. M. Double branched flicker fusion curves from the all-rod skate retina. Science 188: 1120–1122 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Grüsser, O.-J. Cat ganglion-cell receptive fields and the role of horizontal cells in their generation. In: The Neurosciences (Ed. F. O. Schmitt & F. G. Worden) MIT Press, Cambridge. 247–273 (1979).

    Google Scholar 

  • Grüsser, O.-J. & Creutzfeldt, O. Eine neurophysiologische Grundlage des Brücke-Bartley-Effektes: Maxima der Impulsfrequenz retinaler und corticaler Neurone bei Flimmerlicht mittlerer Frequenzen. Pflügers Arch. 263: 668–681 (1957).

    Article  PubMed  Google Scholar 

  • Gunter, R. The spectral sensitivity of dark-adapted cats. J. Physiol. 118: 395–404 (1952).

    PubMed  CAS  Google Scholar 

  • Huber, C. & Adachi-Usami, E. Scotopic luminosity curve as obtained by the visual evoked response in man. Experientia. 28: 1045–1046 (1972).

    Article  PubMed  CAS  Google Scholar 

  • King-Smith, P. E. & Carden, D. Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration. J. Opt. Soc. Am. 66: 709–717(1976).

    Article  PubMed  CAS  Google Scholar 

  • Kojima, M. & Zrenner, E. Local and spatial distribution of photopic and scotopic responses in the visual field as reflected in the visually evoked cortical potential (VECP). In: 14th ISCERG Symposium (Ed. Th. Lawwill). Junk, The Hague (Doc. Ophthal. Proc. Ser. Vol. 13) 31–40 (1977).

    Google Scholar 

  • Kojima, M. & Zrenner, E. Determination of local thresholds in the visual field by recording the scotopic visually evoked cortical potential in man. Ophthalmic Res. 12: 1–8 (1980).

    Article  Google Scholar 

  • Krüger, J. Responses to wavelength contrast in the afferent visual systems of the cat and the rhesus monkey. Vision Res. 19: 1351–1358 (1979).

    Article  PubMed  Google Scholar 

  • La Motte, R. H. & Brown, J. L. Dark adaptation and spectral sensitivity in the cat. Vision Res. 10: 703–716 (1970).

    Article  CAS  Google Scholar 

  • Loop, M. S. An investigation of the scotopic luminosity function in the cat employing a modified conditioned suppression technique. Unpublished master’s thesis. Florida State University, Tallahassee (1971).

    Google Scholar 

  • Loop, M. S., Bruce, L. L. & Petuchowski, S. Cat color vision: The effect of stimulus size, shape and viewing distance. Vision Res. 19: 507–513 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Mollon, J. D. & Polden, P. G. An anomaly in the response of the eye to light of short wavelengths. Phil. Trans. R. Soc. Lond. B 278: 207–240 (1977).

    Google Scholar 

  • Niemeyer, G. The function of the retina in the perfused eye. Docum. Ophthal. 39: 53–116(1975).

    Article  PubMed  CAS  Google Scholar 

  • Padmos, P. & Graf, V. Colour vision in rhesus monkey, studied with subdurally implanted cortical electrodes. In: 11th ISCERG Symposium (Ed. E. Dodt & J. T. Pearlman). Junk, The Hague (Doc. Opthal. Proc. Ser. Vol. 4) 307–314 (1974).

    Google Scholar 

  • Pearlman, A. L. & Daw, N. W. Opponent color cells in the cat lateral geniculate nucleus. Science 167: 84–86 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Rabin, A. R., Mehaffey III, L. & Berson, E. L. Blue cone function in the retina of the cat. Vision Res. 16: 799–801 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Ringo, J., Wolbarsht, M. L., Wagner, H. G., Crocker, R. & Amthor, F. Trichromatic vision in the cat. Science 198: 753–755 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Saunders, R. McD. The spectral responsiveness and the temporal frequency response (TFR) of cat optic tract and lateral geniculate neurons: Sinusoidal stimulation studies. Vision Res. 17: 285–292 (1977).

    CAS  Google Scholar 

  • Schuurmans, R. P. & Niemeyer, G. Effects of strychnine on light-evoked electrical responses in the perfused eye of the cat. Ophthalmic Res. 10, 336 (1978).

    Google Scholar 

  • Schuurmans, R. P. & Zrenner, E. The short and long wavelength sensitive cone mechanisms in the cat’s visual system: ERG, optic nerve and VECP recordings. Pflügers Arch. Suppl. 382: R47 (1979).

    Google Scholar 

  • Sperling, H. G. & Harwerth, R. S. Red-green cone interactions in the increment-threshold spectral sensitivity of primates. Science 172: 180–184 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Valeton, J. M. & van Norren, D. Retinal site of transient tritanopia. Nature 280: 488–490 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Van Norren, D. & Baron, W. S. Increment spectral sensitivities of the primate late receptor potential and b-wave. Vision Res. 17: 807–810 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Wiesel, T. N. & Hubel, D. H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29: 1115–1156 (1966).

    PubMed  CAS  Google Scholar 

  • Wilson, P. D. & Stone, J. Evidence of W-cell input to the cat’s visual cortex via the C laminae of the lateral geniculate nucleus. Brain Res. 92: 472–478 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Zrenner, E. Influence of stimulus duration and area on the spectral luminosity function as determined by sensory and VECP measurements. In: 14th ISCERG Symposium (Ed. Th. Lawwül). Junk, The Hague (Doc. Ophthal. Proc. Ser. Vol. 13 21–30 (1977).

    Google Scholar 

  • Zrenner, E. & Gouras, P. Blue-sensitive cones of the cat produce a rodlike electroretinogram. Invest. Ophthalmol. Visual Sci. 18: 1076–1081 (1979).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Spekreijse P. A. Apkarian

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Dr W. Junk Publishers

About this chapter

Cite this chapter

Schuurmans, R.P., Zrenner, E. (1981). Chromatic Signals in the Visual Pathway of the Domestic Cat. In: Spekreijse, H., Apkarian, P.A. (eds) Visual Pathways. Documenta Ophthalmologica Proceedings Series, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8656-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8656-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8658-9

  • Online ISBN: 978-94-009-8656-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics