Ethambutol Mainly Affects the Function of Red/Green Opponent Neurons

  • E. Zrenner
  • C. J. Krüger
Part of the Documenta Ophthalmologica Proceedings Series book series (DOPS, volume 27)


In patients with ocular defects caused by the tuberculostaticum ETHAMBUTOL the spectral data obtained under selective chromatic adaptation with psychophysical and electrophysiological methods clearly indicate that signals of all three types of spectrally different cones are present in the visual cortex; however, the signs of color-opponent interactions between the individual cone mechanisms are lacking. Therefore it becomes evident that ETHAMBUTOL mainly affects the function of red/green antagonistic neurons. This method of investigation in patients as described here permits differentiation between toxic alterations affecting the cone receptor and their direct pathways to the visual cortex from those disturbing the action of color-antagonistic mechanisms, upon which chromatic as well as spatial coding strongly relies.


Color Vision Test Flash Cone Mechanism Spectral Sensitivity Function Psychophysical Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi-Usami, E., Kellermann, F. J. & Makabe, R. Visuell evozierte Antworten bei Patienten mit Ethambutol-Schäden. Ber. Dtsch. Ophthalmol. Ges. 72: 181–185 (1974).Google Scholar
  2. Carr, R. E. & Henkind, P. Ocular manifestation of Ethambutol. Toxic amblyopia after administration of an experimental antituberculotic drug. Arch. Ophthal. 67: 566–571 (1962).Google Scholar
  3. De Valois, R. L., Abramov, I. & Jacobs, G. H. Analysis of response patterns of LGN cells. J. Opt. Soc. Am. 56: 966–977 (1966).PubMedCrossRefGoogle Scholar
  4. Gouras, P. Identification of cone mechanisms in monkey ganglion cells. J. Physiol. 199: 533–547 (1968).PubMedGoogle Scholar
  5. Gouras, P & Zrenner, E. Enhancement of luminance flicker by color-opponent mechanisms. Science 205: 587–589 (1979).PubMedCrossRefGoogle Scholar
  6. Gross, V., Eule, H. & Hager, G. Auswertung einer Toxizitätsstudie bei intermittierender Ethambutol-Medikation. Klin. Mbl. Augenheilk. 163: 17–22 (1973).Google Scholar
  7. Grützner, P. Über erworbene Farbensinnstörungen bei Sehnervenerkrankungen. Graefes Arch. Ophthalmol. 169: 366–384 (1966).Google Scholar
  8. Grützner, P. Acquired color vision defects. In: Handbook of Sensory Physiology, (Ed. H. Autrum, R. Jung, W. R. Löwenstein, D. M. Makay & H. L. Teuber) Springer, New York. VII/4: 643–659 (1972).Google Scholar
  9. Hoffmann, M. L., Zrenner, E. & Langhof, H. J. Die Wirkung der Pupille als Apertur-und Bildfeldblende auf die verschiedenen Komponenten des menschlichen Elektroretinogramms. Albrecht v. Graefes Arch. klin. exp. Ophthal. 206: 237–245 (1978).CrossRefGoogle Scholar
  10. Jaeger, W., Lux, P., Grützner, P. & Jessen, K. H. Subjektive und objektive spektrale Helligkeitsverteilung bei angeborenen und erworbenen Farbensinnstörungen. In R. Jung(ed.): Neurophysiologie und Psychophysik des visuellen Systems. Symposium Freiburg/Br. Springer, Berlin. p. 199–208 (1961).Google Scholar
  11. Jankov, E. Spektralsensitivität der off-Antwort in menschlichen VECP bei verschiedenfarbiger Adaptation. Albrecht v. Graefes Arch. klin. exp. Ophthal. 206: 121–133 (1978).CrossRefGoogle Scholar
  12. King-Smith, P. E. & Carden, D. Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration. J. Opt. Soc. Am. 66: 709–718 (1976).PubMedCrossRefGoogle Scholar
  13. Köllner, H. Die Störungen des Farbensinnes. Karger, Berlin. (1912).Google Scholar
  14. Kojima, M. & Zrenner, E. Off-components in response to brief light flashes in the oscillatory potential of the human electroretinogram. Albrecht v. Graefes Arch. klin. exp. Ophthal. 206: 107–120 (1978).CrossRefGoogle Scholar
  15. Leibold, J. E. The ocular toxicity of Ethambutol and its relation to dose. Ann. N. Y. Acad. Sci. 135: 904–908 (1966).PubMedCrossRefGoogle Scholar
  16. Little, R. E. A mean square error comparison of certain median response estimates for the up-and-down method with small samples. J. Am. Statist. Assoc. 69: 202–206 (1974).CrossRefGoogle Scholar
  17. Marre, M. Clinical examination of the three color vision mechanisms in acquired color vision defects. In: Acquired color vision deficiencies In. Symposium, Ghent. 1971. Karger, Basel. (Mod. Probl. Ophthal). 11 224-227 (1972).Google Scholar
  18. Orou, F., Sideroff, G. & Schnabel, F. Frequenzuntersuchungen von Opticuserkrankungen im Rahmen der Myambutol-Behandlung. Klin. Mbl. Augenheilk. 161: 601–603 (1972).PubMedGoogle Scholar
  19. Pahlitzsch, H. & Tiburtius, H. Augenuntersuchungen bei Behandlung mit dem neuen Tuberculostaticum Ethambutol-dihydrochlorid. Klin. Mbl. Augenheilk. 154: 228–232 (1969).PubMedGoogle Scholar
  20. Pau, H. & Wahl, M. Myambutol-Schädigung des Auges. Ber. Dtsch. Ophthalmol. Ges. 72: 176–181 (1972).Google Scholar
  21. Pokorny, J., Smith, V. C., Verriest, G. & Pinckers, A. J. L. G. Congenital and acquired color vision defects. Grune and Stratton, New York (1979).Google Scholar
  22. Reimers, D. Irreversible Augenschäden durch Ethambutol. Prax. Pneumol. 26: 445–449 (1972).PubMedGoogle Scholar
  23. Schmidt, I. G. Central nervous system effects of Ethambutol in monkeys. Ann. N. Y. Acad. Sci. 135: 759(1966).PubMedCrossRefGoogle Scholar
  24. Stärk, N. Toxische Sehnervenschädigung durch Myambutol. Med. Klin. 67: 913–916 (1972).PubMedGoogle Scholar
  25. Stiles, W. S. Colour vision: the approach theory increment threshold sensitivity. Proc. Nat. Acad. Sci. USA 45: 100–114 (1959).CrossRefGoogle Scholar
  26. Thaler, A., Heilig, P., Heiss, W. D. & Lessel, M. R. Toxische Schädigung des nervus opticus durch Ethambutol. Klin. Mbl. Augenheilk. 165: 660–664 (1974).PubMedGoogle Scholar
  27. Trusciewicz, D. Farnsworth 100-Hue Test in diagnosis of Ethambutol-induced damage to optic nerve. Ophthalmologica 171: 425–431 (1975).CrossRefGoogle Scholar
  28. Verriest, G. Recent advances in the study of the acquired deficiencies of color vision. Fondazione’ Giorgio Ronchi’ XXIV. Firenze (1974).Google Scholar
  29. Wald, G. The receptors of human color vision. Science 145: 1007–1017 (1964).PubMedCrossRefGoogle Scholar
  30. Weder, W. Myambutolschäden des Sehnerven. Ber. Dtsch. Ophthalmol. Ges. 72: 172–175 (1972).Google Scholar
  31. Wiesel, T. N. & Hubel, D. H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29: 1115–1156 (1966).PubMedGoogle Scholar
  32. Zrenner, E. Evidence of colour opponency as detected by the visually evoked cortical potential (VECP). Pflügers Arch. Suppl. 365: R 48 (1976).Google Scholar
  33. Zrenner, E. Influence of stimulus duration and area on the spectral luminosity function as determined by sensory VECP measurements. In: (Doc. Ophthal. Proc. Series Vol. 13 14th ISCERG Symposium Louisville 1976 (ed. T. Lawwill) Junk, The Hague 21–30 (1977).Google Scholar
  34. Zrenner, E. Die Verarbeitung von farbigen Reizen der Primaten retina. Klin. Mbl. Augenheilk. 174: 654–656 (1979).PubMedGoogle Scholar
  35. Zrenner, E. & Baier, M. Einsatz eines Prozeßrechners für on-line Untersuchungen der lichtinduzierten elektrischen Antwort des menschlichen Auges. EDV in Medizin und Biologie 9: 41–46 (1978).Google Scholar
  36. Zrenner, E. & Gouras, P. Cone opponency in tonic ganglion cells and its variation with eccentricity in rhesus monkey retina. Invest. Ophthalmol. Vis. Sci. (Suppl.) 18: 77 (1979).Google Scholar
  37. Zrenner, E. & Kojima, M. Visually evoked cortical potential (VECP) in dichromats. Mod. Probl. Ophthal. 17: 241–246 (1976).Google Scholar
  38. Zrenner, E., Langhof, H. J., Welt, R. & Kojima, M. Elektro-ophthalmologische Beobachtungen zum Verlauf einseitiger tapetoretinaler Dystrophie. Klin. Mbl. Augenheilk. 169: 331–337(1976).PubMedGoogle Scholar

Copyright information

© Dr W. Junk Publishers 1981

Authors and Affiliations

  • E. Zrenner
    • 1
  • C. J. Krüger
    • 2
  1. 1.Max-Planck-Institut für Physiologische und Klinische ForschungBad NauheimGermany
  2. 2.Augenklinik derMediz HochschuleHannoverGermany

Personalised recommendations