Skip to main content

Problems Along the Course of the Second Visual Neuron-Ganglion Cell to Lateral Geniculate Body

  • Chapter
Visual Pathways

Part of the book series: Documenta Ophthalmologica Proceedings Series ((DOPS,volume 27))

  • 80 Accesses

Abstract

The physiological problems connected with the distal visual pathway are determined by anatomical, hydrostatic, vascular, and toxicological conditions to mention but a few. A number of these problems have been solved with the help of electrophysiological methods, although virtually none of them are amenable to a non-invasive electrophysiological approach. A series of representative problems is treated with emphasis on conditioning factors and potential solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi-Usami, E., Misago, M. & Kanayama, N. Electro-perimetry by means of the scotopic VECP. In: Electrodiagnosis, toxic agents and visionvv. 15th ISCEV Symposium (Ed. J. François & A. De Rouck) Junk, The Hague. (Doc. Ophthal. Proc. Series, Vol. 15) 179–187 (1978).

    Google Scholar 

  • Barlow, H. B. & Levick, W. R. Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. 173: 377–407 (1964).

    PubMed  CAS  Google Scholar 

  • Biersdorf, W. R. Cortical evoked responses from stimulation of various regions of the visual field. In: 11th ISCERG Symposium (Ed. E. Dodt & J. T. Pearlman) (Doc. Ophthal. Proc. Series, Vol. 4) Junk, The Hague. 249–255 (1974).

    Google Scholar 

  • Duke-Elder, Sir S. & Wybar, K. C. The anatomy of the visual system. In: System of Ophthalmology, Vol. 2 (Ed. Sir S. Duke-Elder). Kimpton, London. 605–606 (1961).

    Google Scholar 

  • Enroth-Cugell, C. & Robson, J. G. The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187: 517–552 (1966).

    PubMed  CAS  Google Scholar 

  • Fitzgerald, C. R., Enoch, J. M. & Temme, L. A. Different functional changes recorded in open-angle glaucoma and anterior ischemic optic neuropathy. Invest. Ophthalmol. Vis. Sci. (Suppl.). 125 (1980a).

    Google Scholar 

  • Fitzgerald, C. R., Enoch, J. M. & Temme, L. A. Kinetic perimetry (in the plateau region of the field) as a sensitive indicator of visual fatigue or saturation-like defects in retrobulbar anomalies. Invest. Ophthalmol. Vis. Sci. (Suppl.). 92 (1980b).

    Google Scholar 

  • François, J., Verriest, G. & De Rouck, A. Étude des fonctions visuelles dans deux cas d’intoxication par la quinine. Ophthalmologica 153: 324–335 (1967).

    Article  PubMed  Google Scholar 

  • Fukada, Y. Receptive field organization of cat optic nerve fibers with special reference to conduction velocity. Vision Res. 11: 209–226 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Halliday, A. M., McDonald, W. I., & Mushin, J. Delayed visual evoked response in optic neuritis. Lancet 2: 982–985 (1972).

    Article  Google Scholar 

  • Hsu-Winges,C., Stamper,R. L. & Sopher,M.Arden contrast sensitivity testing in normals, glaucoma suspects and chronic glaucoma patients. Invest. Ophthalmol. Vis. Sci. (Suppl.). 84 (1980).

    Google Scholar 

  • Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160: 106–154 (1962).

    PubMed  CAS  Google Scholar 

  • Kooi, K. A. & Marshall, R. E. Visual evoked potentials in central disorders of the visual system. Harper and Row, Hagerstown, Maryland (1979).

    Google Scholar 

  • Kuffler, S. W. Neurons in the retina: organization inhibition and excitation problems. Cold Spring Harbor Symp. Quart. Biol. 17: 281–292 (1952).

    CAS  Google Scholar 

  • Kuffler, S. W. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16: 37–68 (1953).

    PubMed  CAS  Google Scholar 

  • Lettvin, J. Y., Maturana, H. R., McCulloch, W. S. & Pitts, W. H. What the frog’s eye tells the frog’s brain. Proc. Inst. Radio Eng. N. Y. 47: 1940–1951 (1959).

    Google Scholar 

  • Levick, W. R. The mechanism of directionally selective units in the rabbit’s retina. J. Physiol. 178: 477–504 (1965).

    PubMed  Google Scholar 

  • Levick, W. R. Receptive fields and trigger features of ganglion cells in the visual streak of rabbit retina. J. Physiol. 188: 285–308 (1967).

    PubMed  CAS  Google Scholar 

  • Lewis, E. G., Dustman, R. E. & Beck, E. C. The effects of alcohol on visual and somato-sensory evoked responses. Electroenceph. clin. Neurophysiol. 28: 202–205 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Müller, W. & Haase, E. Das Verhalten der corticalen Antwort unter Alkoholeinwirkung. Graefes Arch. Ophthal. 173: 108–113 (1967).

    Google Scholar 

  • Nagin, P. A. & Schwartz, B. Image processing in the measurement of optic disc pallor. Invest. Ophthalmol. Vis. Sci. (Suppl.). 275 (1980).

    Google Scholar 

  • Osterberg, G. A. Topography of the layer of rods and cones in the human retina. Acta. Ophthal., Suppl. 6 (1935).

    Google Scholar 

  • Ozaki, K., Levy, N. S. & Bonney, R. C. Responses to the Arden modulation transfer function plates in normal eyes with optically altered visual acuity. Invest. Ophthalmol. Vis. Sci. (Suppl.) 125 (1980).

    Google Scholar 

  • Polyak, S. The Retina. University of Chicago Press, Chicago (1941).

    Google Scholar 

  • Portney, G. L. Photogrammetric analysis of the three dimensional geometry of normal and glaucomatous cups. Trans. Am. Acad. Ophthalmol. Otolaryngol., 81: 239–246 (1976).

    CAS  Google Scholar 

  • Potts, A. M. & Nagaya, T. Studies on the visual evoked response. I. The use of the 0.06 degree red target for evaluation of foveal function. Invest. Ophthalmol. Vis. Sci. 4: 303–309 (1965).

    CAS  Google Scholar 

  • Potts, A. M., Hodges, D., Shelman, C. B., Fritz, K. J., Levy, N. S. & Mangnall, Y. Morphology of the primate optic nerve: I. Method and total fiber count. Invest. Ophthalmol. Vis. Sci. 11: 980–988 (1972a).

    CAS  Google Scholar 

  • Potts, A. M., Hodges, D., Shelman, C. B., Fritz, K. J., Levy, N. S. & Mangnall, Y. Morphology of the primate optic nerve: II. Total fiber size distribution and fiber density distribution. Invest. Ophthalmol. Vis. Sci. 11: 989–1003 (1972b).

    CAS  Google Scholar 

  • Potts, A. M., Hodges, D., Shelman, C. B., Fritz, K. J., Levy, N. S. & Mangnall, Y. Morphology of the primate optic nerve: III Fiber characteristics of the foveal outflow. Invest. Ophthalmol. Vis. Sci. 11: 1004–1016 (1972c).

    CAS  Google Scholar 

  • Praglin, J., Spurney, R. & Potts, A. M. An experimental study of electroretinography: I. The electroretinogram in experimental animals under the influence of methanol and its oxidation products. Am. J. Ophth. 39: 52–62 (1955).

    PubMed  CAS  Google Scholar 

  • Rhodes, L. E., Obitz, F. W. & Creel, D. Effect of alcohol and task on hemispheric asymmetry of visually evoked potentials in man. Electroenceph. clin. Neurophysiol. 38: 561–568 (1975).

    Article  CAS  Google Scholar 

  • Sokol, S., Domar, A. D., Moskowitz, A. & Schwartz, B. Pattern VEP latency and contrast sensitivity in glaucoma. Invest. Ophthalmol. Vis. Sci. (Suppl.). 84 (1980).

    Google Scholar 

  • Sonty, S. & Schwartz, B. Visually evoked potentials in evaluation of glaucoma and ocular hypertension. Invest. Ophthalmol. Vis. Sci. (Suppl.). 142 (1980).

    Google Scholar 

  • Tyler, C. W. Notch loss of temporal frequency sensitivity in glaucoma and ocular hypertension. Invest. Ophthalmol. Vis. Sci. (Suppl.). 124 (1980).

    Google Scholar 

  • Van Lith, G. H. M. & Mak, G. T. M. A quantitative evaluation of the VECP in optic neuritis. In: 11th ISCERG Symposium (Ed. E. Dodt & J. T. Pearlman) (Doc. Ophthal. Proc. Series, Vol. 4) Junk, The Hague. 375–386 (1974).

    Google Scholar 

  • Van Lith, G. H. M. & Vijfvinkel-Bruinenga, S. Optic neuropathy due to alcohol abuse and evoked cortical potentials. In: Electrodiagnosis, toxic agents and vision. 15th ISCEV Symposium (Ed. J. François & A. De Rouck) (Doc. Ophthal. Proc. Series, Vol. 15) Junk, The Hague, 221–225 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Spekreijse P. A. Apkarian

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Dr W. Junk Publishers

About this chapter

Cite this chapter

Potts, A.M. (1981). Problems Along the Course of the Second Visual Neuron-Ganglion Cell to Lateral Geniculate Body. In: Spekreijse, H., Apkarian, P.A. (eds) Visual Pathways. Documenta Ophthalmologica Proceedings Series, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8656-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8656-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8658-9

  • Online ISBN: 978-94-009-8656-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics