Skip to main content

A Survey of Estimating Distributional Parameters and Sample Sizes from Truncated Samples

  • Chapter
Statistical Distributions in Scientific Work

Part of the book series: NATO Advanced study Institutes Series ((ASIC,volume 79))

Summary

Suppose X1,…, XN are independent random variables with common distribution F(x;θ). We observe Xi only if it lies outside a given region R. Thus the number n of observed X’s is a binomial (N,P) variate, where P = 1 — P(X in R). Based on n and the values of the observed X’s, we want to estimate N and θ. Conditional and unconditional maximum likelihood estimators and modifications of these will be discussed. Asymptotic results of both first and second order will be considered, and small sample results also mentioned. Sequential and two stage results will receive brief coverage. A variety of applications will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blumenthal, S. (1977). Estimating population size with truncated sampling. Communications in Statistics, A6, 297–308.

    Article  MathSciNet  Google Scholar 

  • Blumenthal, S. (1980). Stochastic expansions for point estimation from complete, censored and truncated samples. Submitted for publication.

    Google Scholar 

  • Blumenthal, S., Dahiya, R. C., Gross, A. J. (1978). Estimating the complete sample size from an incomplete Poisson sample. Journal of the American Statistical Association, 73, 182–187.

    Article  MathSciNet  MATH  Google Scholar 

  • Blumenthal, S., Marcus, R. (1975a). Estimating the number of items on life test. IEEE Transactions on Reliability R-24, 271–273.

    Google Scholar 

  • Blumenthal, S., Marcus, R. (1975b). Estimating population size with exponential failure. Journal of the American Statistical Association, 28, 913–922.

    Article  MathSciNet  Google Scholar 

  • Blumenthal, S., Sanathanan, L.P. (1980). Estimation with truncated inverse binomial sampling. Communications in Statistics, A9, 997–1017.

    Article  MathSciNet  Google Scholar 

  • Dahiya, R.C. (1980a). An improved method of estimating an integer-parameter by maximum likelihood. The American Statistician, to appear.

    Google Scholar 

  • Dahiya, R.C. (1980b). Pearson goodness-of-fit test when the sample size is unknown. Unpublished manuscript.

    Google Scholar 

  • Dahiya, R.C., Gross, A.J. (1973). Estimating the zero class from a truncated Poisson sample. Journal of the American Statistical Association, 68, 731–733.

    Article  MathSciNet  MATH  Google Scholar 

  • Goel, A.L., Joglekar, A.M. (1976). Reliability acceptance sampling plans based upon prior distribution, III. Implications and determination of the prior distribution. Technical Report No. 76–3, Department of Industrial Engineering and Operations Research, Syracuse University.

    Google Scholar 

  • Gross, A.J. (1971). Monotonicity properties of the moments of truncated gamma and Weibull density functions. Techometrics, 13, 851–857.

    Article  MATH  Google Scholar 

  • Hartley, H.O. (1958). Maximum likelihood estimation from incomplete data. Biometrics, 14, 174–194.

    Article  MATH  Google Scholar 

  • Holla, M.S. (1967). Reliability estimation of the truncated exponential model. Techometrics, 9, 332–335.

    Article  MathSciNet  MATH  Google Scholar 

  • Jelinski, Z., Moranda, P. (1972). Software reliability research. In Statistical Computer Performance Evaluation, W. Freiberger, ed. Academic Press, New York. Pages 465–484.

    Google Scholar 

  • Johnson, N.L. (1962). Estimation of sample size. Technometrics, 4, 59–67.

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, N.L. (1967). Sample censoring. ARO-D Rep. 67–2, U. S. Army Research Office - Durham, Durham, N.C.

    Google Scholar 

  • Johnson, N.L. (1970). A general purpose test of censoring of extreme sample values. In Essays in Probability and Statistics (S. N. Roy Memorial Volume), R. C. Bose, ed. University of North Carolina Press, Chapel Hill, Pages 377– 384.

    Google Scholar 

  • Johnson, N.L. (1971). Comparison of some tests of sample censoring of extreme values. Australian Journal of Statistics, 13, 1–6.

    Article  MATH  Google Scholar 

  • Johnson, N.L. (1972). Inferences on sample size: sequences of samples. Trabajos de Estadistica, 23, 85–110.

    MATH  Google Scholar 

  • Johnson, N.L. (1973). Robustness of certain tests of censoring of extreme values. Institute of Statistics mimeo series No. 866, University of North Carolina, Chapel Hill.

    Google Scholar 

  • Johnson, N.L. (1974a). Robustness of certain tests of censoring of extreme values, II: some exact results for exponential populations. Institute of Statistics mimeo series No. 940, University of North Carolina, Chapel Hill.

    Google Scholar 

  • Johnson, N.L. (1974b). Estimation of rank order. Institute of Statistics mimeo series No. 931, University of North Carolina, Chapel Hill.

    Google Scholar 

  • Johnson, N. L. (1976). Completeness comparisons among sequences of samples. Institute of Statistics mimeo series No. 1056, University of North Carolina, Chapel Hill.

    Google Scholar 

  • Johnson, N. L., Kotz, S. (1969). Discrete Distributions. Houghton Mifflin, Boston.

    MATH  Google Scholar 

  • Johnson, N. L., Kotz, S. (1970a). Continuous Univariate Distributions-1. Houghton Mifflin, Boston.

    Google Scholar 

  • Johnson, N. L., Kotz, S. (1970b). Continuous Univariate Distributions-2. Houghton Mifflin, Boston.

    Google Scholar 

  • Johnson, N. L., Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions. Wiley, New York.

    MATH  Google Scholar 

  • Marcus, R., Blumenthal, S. (1974). A sequential screening procedure. Techometries, 16, 229–234.

    Article  MathSciNet  MATH  Google Scholar 

  • Moranda, P.B. (1975). Prediction of software reliability during debugging. MDAC paper WD 2471, McDonnell Douglas Astronautics Company-West, Huntington Beach, California.

    Google Scholar 

  • Nath, G.B. (1975). Unbiased estimates of reliability for the truncated gamma distribution. Scandinavian Actuarial Journal, 1, 181–186.

    MathSciNet  Google Scholar 

  • Rao, B.R., Mazumdar, S., Waller, J.H., Li, C.C. (1973). Correlation between the numbers of two types of children in a family. Biometrics, 29, 271–279.

    Article  Google Scholar 

  • Sampford, M.R. (1955). The truncated negative binomial distribution. Biometrika, 42, 58–69.

    MathSciNet  MATH  Google Scholar 

  • Sanathanan, L.P. (1972a). Estimating the size of a multinomial population. Annals of Mathematical Statistics, 43, 142–152.

    Article  MathSciNet  MATH  Google Scholar 

  • Sanathanan, L.P. (1972b). Models and estimation methods in visual scanning experiments. Technometrics, 14, 813–840.

    Article  MATH  Google Scholar 

  • Sanathanan, L.P. (1977). Estimating the size of a truncated sample. Journal of the American Statistical Association, 72, 669–672.

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, W. L. (1957). A note on truncation and sufficient statistics. Annals of Mathematical Statistics, 28, 247–252.

    Article  MathSciNet  MATH  Google Scholar 

  • Tukey, J.W. (1949). Sufficiency, truncation, and selection. Annals of Mathematical Statistics, 20, 309–311.

    Article  MathSciNet  MATH  Google Scholar 

  • Watson, D., Blumenthal, S. (1980). Estimating the size of a truncated sample. Communications in Statistics, A9, 1535–1550.

    Article  Google Scholar 

  • Watson, D., Blumenthal, S., (1981). A two stage procedure for estimating the size of a truncated exponential sample. Australian Journal of Statistics 20, No. 3.

    Google Scholar 

  • Wittes, J.T. (1970). Estimation of population size: the Bernoulli census. Ph.D. thesis, Harvard University.

    Google Scholar 

  • Wittes, J.T., Cotton, T., Sidel, V.W. (1974). Capture- recapture methods for assessing the completeness of case ascertainment when using multiple information sources. Journal of Chronic Disease, 27, 25–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 D. Reidel Publishing Company

About this chapter

Cite this chapter

Blumenthal, S. (1981). A Survey of Estimating Distributional Parameters and Sample Sizes from Truncated Samples. In: Taillie, C., Patil, G.P., Baldessari, B.A. (eds) Statistical Distributions in Scientific Work. NATO Advanced study Institutes Series, vol 79. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8552-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8552-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8554-4

  • Online ISBN: 978-94-009-8552-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics