Compound Distributions Relevant to Life Testing

  • J. J. J. Roux
  • P. J. Becker
Conference paper
Part of the NATO Advanced Study Institutes Series book series (ASIC, volume 79)

Summary

Compound distributions play an important role in life testing, particularly when a process with a high percentage of early failures is involved. Compound distributions capable of describing this situation in the univariate case were based on the exponential and the gamma distributions. This paper reports a bivariate study of these compound distributions.

Key Words

Bivariate compound distribution exponential gamma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basu, A. P. (1971). Bivariate failure rate. Journal of the American Statistical Association, 60, 103–104.CrossRefGoogle Scholar
  2. Becker, P. J. and Roux, J. J. J. (1980). A bivariate extension of the gamma distribution. South African Statistical Journal (submitted).Google Scholar
  3. Bhattacharya, S. K. (1966). A modified Bessel function model in life testing. Netrika, 11, 133–144.CrossRefMATHGoogle Scholar
  4. Block, H. W. (1975). Continuous multivariate exponential extensions. In Reliability and Fault Tree Analysis, R. E. Barlow et al., eds. SIAM, Philadelphia.Google Scholar
  5. Block, H. W. and Basu, A. P. (1974). A continuous bivariate exponential extension. Journal of the American Statistical Association, 69, 1031–1037.MathSciNetCrossRefMATHGoogle Scholar
  6. Dubey, S. D. (1970). Compound gamma, beta and F distributions. Metrika, 16, 27–31.MathSciNetCrossRefGoogle Scholar
  7. Erdelyi, A. (1953). Higher Transcendental Functions, Vol. 1, 2. McGraw-Hill, New York.Google Scholar
  8. Freund, J. E. (1961). A bivariate extension of the exponential distribution. Journal of the American Statistical Association, 56, 971.-977.MathSciNetCrossRefMATHGoogle Scholar
  9. Friday, D. S. and Patil, G. P. (1977). A bivariate exponential model with applications to reliability and computer generation of random variables. In The Theory and Applications of Reliability, C. P.Tsokos and I. N. Shimi, eds. Academic Press, New York.Google Scholar
  10. Gumbel, E. J. (1960). Bivariate exponential distributions. Journal of the American Statistical Association, 55, 698–707.MathSciNetCrossRefMATHGoogle Scholar
  11. Lomax, K. S. (1954). Business failures: another example of the analysis of failure data. Journal of the American Statistical Association, 49, 847–852.CrossRefMATHGoogle Scholar
  12. Marshall, A. W. and Olkin, I. (1967a). A multivariate exponential distribution. Journal of the American Statistical Association, 62, 30–44.MathSciNetCrossRefMATHGoogle Scholar
  13. Marshall, A. W. and Olkin, I. (1967b). A generalized bivariate exponential distribution. Journal of Applied Probability, 4, 291–302.MathSciNetCrossRefMATHGoogle Scholar
  14. Shaman, P. (1977). Some Bayesian considerations in spectral estimation. Biometrika, 64, 79–84.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1981

Authors and Affiliations

  • J. J. J. Roux
    • 1
  • P. J. Becker
    • 1
  1. 1.University of South AfricaPretoriaSouth Africa

Personalised recommendations