The Role of Electrostatic Charging of Small and Intermediate Sized Bodies in the Solar System

  • D. A. Mendis
Part of the Astrophysics and Space Science Library book series (ASSL, volume 91)


The role of electrostatic charging of small and intermediate sized bodies in the solar system is reviewed. These bodies include planetary, interplanetary and cometary dust as well as cometary nuclei (at large heliocentric distances), asteroids and the larger bodies in the Saturnian ring system. While this charging has both physical and dynamical consequences for the small dust grains, it has only physical consequences for the larger bodies. The main physical consequences for the small grains are electrostatic erosion (“chipping”) and disruption, whereas for the larger bodies they include electrostatic levitation and blow-off of fine loose dust from their surfaces.

A large variety of solar system phenomena, recently observed by the Pioneer and Voyager deep space probes as well as the HEOS-2 earth satellite, are explained in terms of these processes. Certain peculiar features observed in the dust tails of comets as well as the spatial orientation of the zodiacal dust cloud may also be explained along these lines.

The possible electrostatic erosion of the dust mantles of new comets as well as the electrostatic “polishing” of the smaller aseteroids are also discussed.


Solar Wind Interplanetary Magnetic Field Heliocentric Distance Electrostatic Charge Charged Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Danielson, G.E. and Jewitt, D., 1979, California Institute of Technology, Pasadena, Press Release, Oct. 16, 1979.Google Scholar
  2. DeForest, S. E., 1972, J. Geophys. Res., 77, 651.ADSCrossRefGoogle Scholar
  3. Fechtig, H., Grün, E. and Morfill, G., 1979, Planet. Space Sci., 27, 511.ADSCrossRefGoogle Scholar
  4. Gomer, R., 1961, “Field Emission and Field Ionization, ” Harvard Univ. Press.Google Scholar
  5. Grard, R. J. L. (Ed.)., 1973, Photon and Particle Interactions with Surfaces in Space, D. Reidel Pub. Co., Holland.Google Scholar
  6. Hartmann, W. K., 1978, Icarus, 33, 50.ADSCrossRefGoogle Scholar
  7. Hill, J. R. and Mendis, D. A., 1979, The Moon and Planets, 21, 3.ADSCrossRefGoogle Scholar
  8. Hill, J. R. and Mendis, D. A., 1980a, Astrophys. J., 242, 395.ADSCrossRefGoogle Scholar
  9. Hill, J. R. and Mendis, D. A., 1980b, The Moon and the Planets, 23, 53.ADSGoogle Scholar
  10. Hill, J. R. and Mendis, D. A., 1981a, Can. J. Phys. (in press).Google Scholar
  11. Hill, J. R. and Mendis, D. A., 1981b, The Moon and the Planets (in press).Google Scholar
  12. Hill, J. R. and Mendis, D. A., 1981c, in preparation.Google Scholar
  13. Holzer, T. E.1972, J. Geophys. Res., 77, 5407.ADSCrossRefGoogle Scholar
  14. Humes, D. H., Alverez, J. M., Kinard, W. H. and O’Neal, R. L., 1975, Science, 188, 473.ADSCrossRefGoogle Scholar
  15. Jeans, J. H., 1927, “The Mathematical Theory of Electricity and Magnetism,” Cambridge Univ. Press, p. 246.Google Scholar
  16. Johnson, T. V., Morfill, G. E. and Grün, E., 1980, Geophys. Res. Lett., 7, 305.ADSCrossRefGoogle Scholar
  17. Manka, R. H., 197 3, “Photon and Particle Interaction with Surfaces in Space” (Ed. R. J. L. Grard), D. Reidel Pub. Co., p. 347.Google Scholar
  18. McNutt, R. L., Jr., Belcher, J. W., Sullivan, J. D., Bagneal, F. and Bridge, H. S., 1979, Nature, 803, 280.Google Scholar
  19. Mendis, D. A. and Axford, W. I., 1974, Rev. Earth and Planet. Sci., 2, 419.ADSCrossRefGoogle Scholar
  20. Mendis, D. A., 1979, COSPAR Space Res., XIX (Ed. M. J. Rycroft ), Pergamon Press, NY, p. 423.Google Scholar
  21. Mendis, D. A., Hill, J. R., Houpis, H. L. F. and Mendis, D. A., 1981, Astrophys. J. (submitted).Google Scholar
  22. Morfill, G. E. and Grün, E., 1979a, Planet. Space Sci., 27, 126 9.Google Scholar
  23. Morfill, G. E. and Grün, E., 1979b, Planet. Space Sci., 27, 128 3.Google Scholar
  24. Morfill, G. E., Grün, G. and Johnson, T. V., 1980a, Planet. Space Sci. (in press).Google Scholar
  25. Morfill, G. E., Grün, G. and Johnson, T. V., 1980b, Planet. Space Sci. (in press).Google Scholar
  26. Öpik, E. J., 1956, Irish Astron. J., 4, 84.ADSGoogle Scholar
  27. Parker, E. W., 1964, Astrophys. J., 139, 951.ADSCrossRefGoogle Scholar
  28. Parthasarathy, R., 1978, Astrophys. J., 83, 1235.ADSGoogle Scholar
  29. Rhee, J. W., 1976, “Interplanetary Dust and Zodiacal Light” (Ed. H. Elsässer and H. Fechtig ), Springer-Verlag, p. 238.Google Scholar
  30. Sekanina, Z. and Farrel, J. A., 1980, in Proceedings of LAU Symposium No. 90: Solid Particles in the Solar System (Ed. I. Halliday and B. A. Mclntoch ), p. 267.Google Scholar
  31. Sekanina, Z. and Farrell, J. A., 1981, Astron. J., (in press).Google Scholar
  32. Singer, S. F. and Walker, E. H., 1962, Icarus, 1, 112.ADSCrossRefGoogle Scholar
  33. Smith, E. J., Davis, L., Jr., Jones, D. E., Colburn, D. S., Coleman, P. J., Jr., Dyal, P. and Sonett, C. P., 1974, Science 183, 305.ADSCrossRefGoogle Scholar
  34. Whipple, E. C., Jr., 1965, NASA-GSFC publication X-6l 5-62-296.Google Scholar
  35. Whipple, E. C., Jr., 1981, Reports in Progress on Physics (in press).Google Scholar
  36. Whipple, F. L., 1977, “Comets, Asteroids and Meteoroids,” (Ed. A. H. Delsemme ), Univ. of Toledo Press, p. 25.Google Scholar

Copyright information

© D. Reidel Publishing Company 1981

Authors and Affiliations

  • D. A. Mendis
    • 1
  1. 1.Department of Electrical Engineering and Computer Science and The Center for Astrophysics and Space ScienceUniversity of California, San DiegoLa JollaUSA

Personalised recommendations