Cometary Material and the Origins of Life on Earth

  • Antonio R. Lazcano-Araujo
  • J. Oró
Part of the Proceedings of the College Park Colloquia book series (PCPC, volume 5)

Abstract

Comets are the most pristine minor bodies in the Solar System. With the exception of phosphorus, all the organogenic elements (H, C. N, O, S, P) which are necessary for life have been found in comets. By comparing their carbon abundances with those of carbonaceous chondrites it has been estimated that 10% or more of the cometary matter is made of organic compounds. The nature of the chemical species detected in comets suggests that the complexity of their parent molecules is at least comparable to that of interstellar molecules.

The possible sources and origins of cometary organic molecules are: (1) the primordial solar nebula, which must have been the primary source of all the organic and inorganic compounds in comets; (2) the organic molecules formed by the ionized radiation resulting from the decay of 26Al and other short-lived presolar isotopes during the early stages of differentiation of the solar nebula; (3) organic compounds produced by the cosmic-ray heating of the matter in the Opik-Oort cloud during its lifetime, and (4) the more complex organic compounds synthesized in the icy surface layers of the cometary nuclei by the action of the solar wind, UV radiation and induced exothermic reactions as comets approach perihelion.

The reactivity of some of the chemical species detected in comets (H, OH, NH2, CO, CS, C2, C3, HCN, CH3CN, H2O) indicate that a number of biochemical compounds, such as amino acids, purines, pyrimidines, etc., may be present in cometary nuclei. However, due to the small mass (~1018g), low temperatures (<200°K) and other environmental conditions, such as the absence of a proper atmosphere, hydrosphere and lithosphere as on the Earth, it is not likely that the processes of organic synthesis in comets have proceeded beyond the stage of chemical evolution of the organic matter in carbonaceous chondrites.

Although it is highly improbable that life could have appeared in comets, the antiquity of terrestrial life, as is indicated by the presence of a complex fossil microbiota of 3.5 × 109 years old suggests that life emerged on Earth during the time in which the influx of cometary material was considerably higher than the present values. Different estimates have shown that the Earth acquired about 1022 grams of carbon by accretion of cometary nuclei during its early history. It is likely that most of the cometary carbon compounds were decomposed into highly reactive chemical species by the heat and shock waves of cometary collisions, thus creating transient, relatively reducing atmospheric environments in which abiotic organic synthesis occurred by quenching and recombination of the reactive species. Furthermore, upon settling to the Earth’s surface, some of these compounds must have given rise through different condensation reactions to the formation of the more complex biochemical monomers and polymers essential to living systems. Therefore, we can conclude that comets contributed significantly to the processes of chemical evolution necessary for the emergence of life on the Earth.

Keywords

Hydrocarbon Glycine Carbon Monoxide Oligomer Cyanide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, P. H. 1978. Ann. Rev. Earth Planet. Sci. 6: 325–351Google Scholar
  2. Adams, W. S. 1943. Publ. Astron. Soc. Pacific 55: 217–225Google Scholar
  3. Ahmad, S. N. and Perry, E. C. 1980. Sci. Prog. Oxford 66: 499–511Google Scholar
  4. Anders, E. and Owen, T. 1977. Science 198: 453–465Google Scholar
  5. Arrhenius, G., De, B. R. and Alfven, H. 1974. In The Sea. E. D. Goldberg (ed.) ( Wiley, New York ), 5: 839–861Google Scholar
  6. Ausloos, P., Rebbert, R. E. and Lias, S. G. 1965. Jour. Chem. Phys. 42: 540–548Google Scholar
  7. Awramik, S. M. 1980. In Biotic Crises in Ecological and Evolutionary Time, M. H. Nitecki (ed.) (Academic Press, New York), in press Google Scholar
  8. Awramik, S. M., Schopf, J. W., Walter, M. R. and Buick, R. 1980. Science in press Google Scholar
  9. Bame, S. J., Hundhausen, A. J. Asbridge, P.A., and Strong, I.B. 1968 Phys. Rev. Lett. 20: 393–395Google Scholar
  10. Bar-Nun, A., Bar-Nun, N., Bauer, S. H. and Sagan, C. 1970. Science 168: 470–473Google Scholar
  11. Bar-Nun, A., Bar-Nun, N., Bauer, S. H. and Sagan, C. 1971. In Chemical Evolution and the Origin of Life, R. Buvet and C. Ponnamperuma (eds.) ( North-Holland, Amsterdam ), 114–122Google Scholar
  12. Bar-Nun, A., Lazcano-Araujo, A. and Oró, J. 1981. in preparation Google Scholar
  13. Benlow, A. and Meadows, A. J. 1977. Astrophys. and Space Sci. 46: 293–300Google Scholar
  14. Ben-Menahem, A. 1975. Phys. Earth Planet. Inter. 11: 1–35Google Scholar
  15. Berger, R. 1961. Proc. Nat. Acad. Sci. USA 47: 1434–1436Google Scholar
  16. Bernal, J. D. 1965. In The Origins of Prebiological Systems and the Molecular Matrices, S. W. Fox (ed.) ( Academic Press, New York ) 65–88Google Scholar
  17. Brown, H. 1952. In The Atmospheres of the Earth and Planets. G. P. Kuiper (ed.) (Univ. of Chicago Press, Chicago), 2nd. ed., 258–266Google Scholar
  18. Brown, J. C. and Hughes, D. W. 1977, Nature 268: 512–514Google Scholar
  19. Brown, R. D., Godfrey, P. S., Storey, J. W. W.., Bassez, M. P., Robinson, B. J., Batchelor, R. A., McCulloch, M. G., Rydbeck, O. E. H. and Hjalmarson, A. G. 1979. Monthly Not. Roy. Astron. Soc. 186: 5P–8 PGoogle Scholar
  20. Brownlee, D. E. 1978. In Cosmic Dust, J. A. M. Mc Donnell (ed.) ( Wiley, Chischester ), 295–336Google Scholar
  21. Brownlee, D. E. 1980. Abstracts of the Fifth College Park Colloquium on Chemical Evolution: Comets and the Origin of Life, Oct. 29–31, 1980, 21Google Scholar
  22. Butler, D. M., Newman, M. J. and Talbot, R. J. 1978. Science 201: 522–525Google Scholar
  23. Cameron, A. G. W. and Pine, M. R. 1973. Icarus 18: 377–406Google Scholar
  24. Carlin, R. K. 1980. Jour. Theor. Biol. 82: 353–362Google Scholar
  25. Chameides, W. L. and Walker, J. G. C. 1980. Nature (submitted)Google Scholar
  26. Chang, S. 1979. In Space Missions to Comets, M. Neugebauer, D. K. Yeomans, J. C. Brandt and R. W. Hobbs (eds.) (NASA CP. 2089, Washington), 59–111Google Scholar
  27. Chapman, C. R. 1976. Geochim. Cosmochim. Acta 40: 701–719Google Scholar
  28. Delsemme, A. H. 1977. In Comets, Asteroids, Meteorites, A. H. Delsemme (ed.) (Univ. Toledo Press, Toledo, Ohio ), 3–13Google Scholar
  29. Delsemme, A. H. 1979. In Space Missions to Comets, M. Neugebauer, D. K. Yeomans, J. C. Brandt and R. W. Hobbs (eds.) (NASA CP 2089, Washington) 139–178Google Scholar
  30. Deamer, D. W. and Oró, J. 1980. BioSystems 12: 167–175Google Scholar
  31. Weaver, H. and Williams, D. R. W. 1971. Astrophys. Lett. 10: 1–3Google Scholar
  32. Dovrovlsky, O. V. and Kajmakov, E. 1977. ln Comets, Asteroids, Meteorites, A. H. Delsemme (ed.), (Univ. of Toledo Press, Toledo, Ohio ), 37–46Google Scholar
  33. Donn, B. D. 1976. The Study of Comets (NASA SP-393, Washington), 611–619Google Scholar
  34. Donn, B. D. and Khanna, R. K. 1980. Astrophys. and Space Sci. 68: 19–26Google Scholar
  35. Everhart, E. 1969. The Astronom. Jour. 74: 735–750Google Scholar
  36. Frey, H. 1978. In Comparative Planetology, C. Ponnamperuma (ed.), ( Academic Press, New York ), 79–101Google Scholar
  37. Garrels, R. M. and MacKenzie, F. T. 1978. Marine Chem. 1: 27–36Google Scholar
  38. Glasel, J. A. 1961. Proc. Nat. Acad. Sci. USA 47: 174–180Google Scholar
  39. Glasel, J. A. 1962. Proc. Nat. Acad. Sci. USA 48: 491–496Google Scholar
  40. Goodwin, A. M. 1976. In The Early History of the Earth, B. F. Windley (ed), ( Wiley, London ), 77–95Google Scholar
  41. Goldanskii, V. I. 1977. Nature 268: 612–613Google Scholar
  42. Greenberg, J. M. 1977 In Comets, Asteroids, Meteorites, A. H. Delsemme (ed.), (Univ. of Toledo Press, Toledo, Ohio ), 491–497Google Scholar
  43. Greenberg, J. M. 1978. In Cosmic Dust, J.A.M. McDonnell (ed.), ( Wiley, Chichester ), 187–294Google Scholar
  44. Greenberg, J. M. this volume Google Scholar
  45. Grieve, R. A. F. and Robertson, P. B. 1979. Icarus 38: 212–229Google Scholar
  46. Grossman, L. 1972. Geochim. Cosmochim. Acta 36: 597–619Google Scholar
  47. Grossman, L. and Larimer, J. W. 1974. Rev. Geophys. Space. Phys. 12: 71–101Google Scholar
  48. Haldane, J. B. S. 1928. Rationalist Annual. 148: 3–10Google Scholar
  49. Hargreaves, W. R., Mulvihill, S. J. and Deamer, D. W. 1977. Nature 266: 78–80Google Scholar
  50. Hargreaves, W. R. and Deamer, D. W. 1978. In Light Transducing Membranes D. W. Deamer (ed.), ( Academic Press, New York ), 23–59Google Scholar
  51. Henderson-Sellers, A., Benlow, A. and Meadows, A. J. 1980. Quart. Jour. Roy. Astron. Soc. 21: 74–81Google Scholar
  52. Hochstim, A. R. 1963. Proc. Nat. Acad. Sci. USA 50: 200–208Google Scholar
  53. Hochstim, A. R. 1971. In Chemical Evolution and the Origin of Life R. Buvet and C. Ponnamperuma (eds.), ( North-Holland, Amsterdam ), 96–113Google Scholar
  54. Hoffman, J. H., Hodges, R. R., McElroy, M. B., Donahue, T. M. and Kol pin, M. 1979 a. Science 203: 800–802Google Scholar
  55. Hoffman, J. H., Hodges, R. R., McElroy, M. B. Donahue, T. M. and Kolpin, M. 1979b. Science 205: 49–52Google Scholar
  56. Hollis, J. M., Snyder, L. E., Suenram, R. D. and Lovas, F. J. 1980. The Astrophys. Jour, (in press)Google Scholar
  57. Hoyle, F., and Wickramasinghe, C. 1977 Lifecloud: The Origin of Life in the Universe ( Harper and Row, New York).Google Scholar
  58. Hoyle, F. and Wickramasinghe, C. 1979a. Astrophys. and Space Sci. 65: 241–244Google Scholar
  59. Hoyle, F. and Wickramasinghe, C. 1979b. Astrophys. and Space Sci. 66: 77–90Google Scholar
  60. Hoyle, F. and Wickramasinghe, C. 1980. Astronhys. and Space Sci. 68: 499–503.Google Scholar
  61. Hunt, J. M. 1972. Am. Assoc. Pet. Geol. Bull. 56: 2073–2077Google Scholar
  62. Hunt, J. M. 1977. Am. Assoc. Pet. Geol. Bull. 61: 100–104Google Scholar
  63. Irvine, W. M., Leschine, S. B. and Schloerb, F. P. 1980. Nature 283: 748–749Google Scholar
  64. Irvine, W. M., Leschine, S. B. and Schloerb, F. P. 1981. Proc. 6th Int. Conf. Origins of Life, Jerusalem, Israel, June 22–27, 1980, 27–32.Google Scholar
  65. Johnson, F. M. 1977. Bull. Am. Astron.Soc. 3: 429Google Scholar
  66. Joss, P. C. 1974. The Astrophys. Jour. 191: 771–774.Google Scholar
  67. Kajmakov, E. A. 1974. Medelirovnie Kometnyh Javleni ( Nauka, Leningrad).Google Scholar
  68. Kajmakov, E. A. and Sharkov, V. I. 1972. In The Motion, Evolution of Orbits and Origin of Comets, G. A. Chebotarev, E. I. Kasimirchad-Polonskaya and B. G. Marsden (eds.) ( Reidel, Dordrecht ), 303–315Google Scholar
  69. Kajmakov, E. A. and Matvejev, I. N. 1979. The Role of Organic Compounds in Comets. A. F. Ioffe Phys. Tech. Inst. Contf, 628 (Nauka, Leningrad)Google Scholar
  70. Krésák, L. 1978. Bull. Astron. Inst. Czechosl. 29: 129–134Google Scholar
  71. Krinov, E. I. 1966. Giant Meteorites ( Pergamon Press, New York )Google Scholar
  72. Lazcano-Araujo, A. 1978. In El Origen de la Vida: Symp. Conmemorativo en Homenaje a A. I. Oparin, A. Lazcano-Araujo and A. Barrera, (eds.), (UNAM, México ), 99–139Google Scholar
  73. Lemmon, R. M. 1979. private communication Google Scholar
  74. Levin, B. Yu. 1954, Meteoritika 11; 132–139Google Scholar
  75. Levine, J. S., Augustsson, T. R., Boughner, R. E., Natarajan, M. and Sacks, L. J. 1980. Abstracts of the Fifth College Park Colloquium on Chemical Evolution: Comets and the Origin of Life, Oct. 29–31, 1980, 25–26Google Scholar
  76. Lewis, J. S. 1974. Earth and Planet. Sci. Lett. 22: 239–244Google Scholar
  77. Lowe, D. R. 1980. Nature 284: 441–443Google Scholar
  78. McCrea, W. H. 1975. Nature 225: 607–609Google Scholar
  79. Miller, S. L. 1953. Science 117: 528–529Google Scholar
  80. Miller, S. L. and Urey, H. C. 1964. In Problems of Evolutionary and Industrial Biochemistry, V. C. Kretovich, T. E. Pavloskaya and G. A. Deborin (eds.). ( Nauka, Moscow ), 357–362Google Scholar
  81. Miller, S. L., Urey, H. C. and Oró, J. 1976. Jour. Mol. Evol. 9: 59–72Google Scholar
  82. Moorbath, S., O’Nions, R. K. and Pankhurst, F. J. 1973. Nature 245: 4365Google Scholar
  83. Moore, M. H., A’Hearn, M. E., Donn, B. D. and Khanna, R. K. 1980. Abstracts of the Fifth College Park Colloquium on Chemical Evolution: Comets and the Origin of Life, Oct. 29–31, 1980, 17Google Scholar
  84. Moulton, R. P. 1905. The Astrophys. Jour. 22: 165–151Google Scholar
  85. Nagy, B. 1975. Carbonaceous Meteorites ( Elsevier, Amsterdam )Google Scholar
  86. Newman, M. J. 1980. Origins of Life 10: 105–110Google Scholar
  87. Nooner, D. W., Gibert, J. M., Gelpi, E. and Oró, J. 1976. Geochim. Cosmochim. Acta 40: 915–924Google Scholar
  88. Oparin, A. I. 1924. Proiskhozdenie Zhizni, Izd. Moskovskii Rabotchii, MockbaGoogle Scholar
  89. Oparin, A. I. 1936. The Origin of Life ( MacMillan, New York )Google Scholar
  90. Oparin, A. I. 1971. In Prebiotic and Biochemical Evolution, A. P. Kimball and J. Oro (eds.) ( North-Holland, Amsterdam ), 1–7Google Scholar
  91. Oparin, A. I. 1972 In, Exobiology, C. Ponnamperuma (ed.) ( North-Holland, Amsterdam ), 1–15Google Scholar
  92. Oparin, A. I. 1979. In El Origen de la Vida: Symposium Conmemorativo en Homenaje a A. I. Oparin, A. Lazcano-Araujo and A. Barrera (eds.), ( UNAM, México ), 137–144Google Scholar
  93. Oró, J. 1961. Nature, 190: 389–390Google Scholar
  94. Oró, J., 1963a. Ann. New York Acad. Sci. 108: 464–481Google Scholar
  95. Oró, J. 1963b. Nature 197: 971–974Google Scholar
  96. Oró, J. 1968. Jour. Brit. Interplan. Soc. 21: 12–25Google Scholar
  97. Oró, J. 1972. Space Life Sci. 3: 507–550Google Scholar
  98. Oró, J. and Lazcano-Araujo, A. 1981. In Cyanide in Biology, B. Vennesland, E. E. Conn, C. J. Knowles, J. Westly, F. Wissing (eds.), (Academic Press, London), in press Google Scholar
  99. Oró, J., Miller, S. L. and Urey, H. C. 1977. In Living Systems as Energy Converters, R. Buvet, M. J. Allen and J. P. Massue (eds.), ( North-Holland, Amsterdam ), 7–19Google Scholar
  100. Oró, J., Sherwood, E., Eichberg, J., and Epps, D. 1978a. In Light Tranducing Membranes ( Academic Press, New York ), 1–21Google Scholar
  101. Oró, J., Holzer, G. and Lazcano-Araujo, A. 1978b. In Workshop on Experimental Approaches to Comets, J. Oró (convener), ( Lunar and Planetary Institute, Houston ), 54–59Google Scholar
  102. Oró, J., Holzer, G. and Lazcano-Araujo, A. 1980. In COSPAR: Life Sciences and Space Research XVIII, R. M. Holmquist (ed.) ( Pergamon Press, Oxford and New York ), 67–82Google Scholar
  103. Owen, T. 1978. In Evolution of Planetary Atmospheres and Climatology of the Earth ( CNRS, Toulouse ), 1–10Google Scholar
  104. Oyama, V. I., Carle, G. C., Woeller, F., and Pollack, J. B. 1979a Science 203: 802–805Google Scholar
  105. Oyama, V. I., Carle, G. C., Woeller, F. and Pollack, J. B. 1979b. Science 205: 52–54Google Scholar
  106. Pang, K. D., Rhoads, J. W., Lane, A. L. and Ajello, J. M. 1980. Nature 283: 277–278Google Scholar
  107. Pollack, J. B. and Black, D. C. 1979. Science 205: 56–59Google Scholar
  108. Pollack, J. B., Veverka, J., Pang, K. D., Colburn, D., Lane, A. L. and Ajello, J. M. 1978. Science 199: 66–69Google Scholar
  109. Pollack, J. B. and Yung, Y.,L. 1980. Ann. Rev. Earth Planet. Sci. 8: 425–487Google Scholar
  110. Ponnamperuma, C. 1971. Ann. New York Acad. Sci. 194: 56–70Google Scholar
  111. Ponnamperuma, C., Lemmon, R. M., Mariner, R. and Calvin, M. 1963. Proc. Nat. Acad. Sci. USA 49: 737–740Google Scholar
  112. Raizer, Yu. P. 1960. Sov. Phys. JETP 37: 1229–1234Google Scholar
  113. Rasool, S. I. 1972. In Exobiology, C. Ponnamperuma (ed.), ( North-Holland, Amsterdam ), 369–399Google Scholar
  114. Ring, D., Wolman, Y., Friedmann, N. and Miller, S. L. 1972. Proc. Nat. Acad. Sci. USA 69: 765–768Google Scholar
  115. Russell, H. N. and Menzel, D. H. 1933. Proc. U.S. Nat. Acad. Sci. 19: 997–1001Google Scholar
  116. Safronov, V.S. 1972. Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets. (NASA TTF-667, Washington)Google Scholar
  117. Salpeter, E. E. 1975. In HII Regions and Related Topics, T. L. Wilson and D. Downes (eds.), ( Springer-Verlag, Berlin ), 1–16Google Scholar
  118. Sagan, C. 1965. Nature 206: 448Google Scholar
  119. Sagan, C. 1973. In Molecules in the Galactic Environment, M. A. Gordon and L. E. Snyder (Eds.), ( Wiley, New York ), 451–468Google Scholar
  120. Schidlowski, M. 1978. In Origin of Life, H. Nöda (ed.), (Japan Soc. Sci. Press, Tokyo ), 3–20Google Scholar
  121. Shoemaker, E. M. 1977. ln Impact and Explosion Cratering, D. J. Roddy, R. O. Pepin and R. B. Merrill (eds.), ( Pergamon Press, New York ), 1–10Google Scholar
  122. Sill, G. T. and Wilkening, L. L. 1978. Icarus 33: 13–22Google Scholar
  123. Simon, M. N. and Simon, M. 1973. The Astrophys. Jour. 184: 757–761Google Scholar
  124. Simon, M. M., Owen, T. and Simon, M. 1974. Nature 252: 666Google Scholar
  125. Talbot, R. J. and Newman, M. J. 1977. The Astrophys. Jour. Suppl. Ser. 34: 295–308Google Scholar
  126. Talbot, R. J., Butler, D. M. and Newman, M. J. 1976. Nature 262: 561–563Google Scholar
  127. Tera, F., Papanastassiou, D. A. and Wasserburg, G. J. 1974. Earth Planet. Sci. Lett. 22: 1–21Google Scholar
  128. Turekian, K. K. and Clark, S. P. 1969. Earth Planet. Sci. Lett. 6: 346–348Google Scholar
  129. Turekian, K. K. and Clark, S. P. 1975. Jour. Atm. Sci. 32: 1257–1261Google Scholar
  130. Turner, B. 1978. Bull. Am. Astr. Soc. 10: 627Google Scholar
  131. Turner, B. 1980. Jour. Mol. Evol. 115: 79–101Google Scholar
  132. Urey, H. C. 1952. Proc. Nat. Acad. Sci. USA. 38: 351–363Google Scholar
  133. Urey, H. C. 1957, Nature 179: 556–557Google Scholar
  134. Urey, H. C. 1973. Nature 242: 32–33Google Scholar
  135. Wald, G. 1964. Proc. Nat. Acad. Sci. USA 52: 595–611Google Scholar
  136. Walker, J. G. C. 1976. In The Early History of the Earth, B. F. Windley (ed.), ( Wiley, New York ), 537–546Google Scholar
  137. Walker, J. G. C. 1977. Evolution of the Atmosphere. ( MacMillan, New York )Google Scholar
  138. Walker, J. G. C. 1978. In Comparative Planetology, C. Ponnamperuma (ed.) ( Academic Press, New York ), 141–163Google Scholar
  139. Wallerstein, G. 1973. Ann. Rev. Astron. Astrophys. 11: 115–134Google Scholar
  140. Wallis, M. K. 1980. Nature 284: 431–433Google Scholar
  141. Walter, M. R., Buick, R. and Dunlop, J. S. R. 1980. Nature 284: 443–445Google Scholar
  142. Wetherill, G. W. 1974. Ann. Rev. Earth. Planet. Sci. 2: 303–331Google Scholar
  143. Wetherill, G. W. 1975. Proc. Lunar Sci. Conf. 6 th, 1539–1559Google Scholar
  144. Wetherill, G. W. 1977. Proc. Lunar Sci. Conf. 8 th, 1–16Google Scholar
  145. Wetherill, G. W. 1980. Ann. Rev. Astron. and Astrophys. 18: 77–113Google Scholar
  146. Whipple, F. 1976. Mem. Soc. Roy. des Sei. de Liege, 6e. serie, IX: 101–111Google Scholar
  147. Wickramasinghe, N. C. 1974. Nature 252: 452–453Google Scholar
  148. Wickramasinghe, N. C. 1975. Monthly Not. Roy. Astr. Soc. 170: 11P–16 PGoogle Scholar
  149. Yang, C. C. and Oró, J. 1971. In Chemical Evolution and the Origin of Life, R. Buvet and C. Ponnamperuma (ed.), ( North-Holland, Amsterdam ) 152–167Google Scholar
  150. Yoshino, D., Hayatsu, R. and Anders, E. 1971. Geochim. Cosmochim. Acta 35: 927–938Google Scholar

Copyright information

© D. Reidel Publishing Company 1981

Authors and Affiliations

  • Antonio R. Lazcano-Araujo
    • 1
  • J. Oró
    • 2
  1. 1.Instituto de AstronomíaUNAMMéxico 20, D.F.Mexico
  2. 2.Departments of Biophysical Sciences and ChemistryUniversity of HoustonHoustonUSA

Personalised recommendations