Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 72))

Abstract

The astronomical theory argues that long-term variations of the earth’s orbital parameters are the fundamental cause of the succession of ice ages during Quaternary or even earlier geological periods. Substantial improvements in observational and theoretical works have been made during the last decades allowing to test this theory against Pleistocene records. Recent objective comparison in the time and frequency domains between ice-volume, paleotemperature and insolation curves strongly support it. Related physical models are also able to reproduce past climate variations in agreement with well-dated geological records. Assuming no human interference, some models with orbital forcing predict that the general cooling that began 6000 YBP will continue, with a first moderate cold peak around 5000 YAP and major coolings about 23 000 YAP and 60 000 YAP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Imbrie, J.: 1981, Time dependent models of the climatic response to orbital variations. This volume.

    Google Scholar 

  2. Berger, A.: 1975, Annales de la Société Scientifique de Bruxelles 89, pp. 69–91.

    Google Scholar 

  3. Berger, A.: 1977, Celestial Mechanics 15, pp. 53–74.

    Article  Google Scholar 

  4. Berger, A.: 1980, Vistas in Astronomy 24, pp. 103–122.

    Article  Google Scholar 

  5. Berger, A.: 1981, in: “Sun and Climate”, CNES, Toulouse (in press).

    Google Scholar 

  6. Berger, A.: 1978, J. Atmos. Sci. 35, pp. 2362–2367.

    Article  Google Scholar 

  7. Berger, A.: 1976, Astronomy and Astrophysics 51, pp. 127–135.

    Google Scholar 

  8. Brouwer, D.: 1953, in: “Climatic Change”, H. Shapley (Ed.), pp. 159–164, Harvard University Press, Cambridge.

    Google Scholar 

  9. Wittmann, A,: 1979, Astronomy and Astrophysics 73, PP. 129–131.

    Google Scholar 

  10. A full list of references is given in Berger (5) and a very complete overview of historical works is available in Imbrie and Imbrie (11).

    Google Scholar 

  11. Imbrie, J. and Imbrie, K.P.: 1979, “Ice Ages, Solving the Mystery”, Enslow Publishers, Short Hills, New Jersey.

    Google Scholar 

  12. Adhémar, J.: 1842, “Révolutions de la Mer”. Déluges Périodiques. Paris.

    Google Scholar 

  13. Croil, J.: 1875, “Climate and Time in their Geological Relations”. Appleton, New York.

    Google Scholar 

  14. Milankovitch, M.: 1920, “Theorie Mathématique des Phenomenes Thermiques produits par la Radiation Solaire”, Académie Yougoslave des Sciences et des Arts de Zagreb, Gauthier-Villars.

    Google Scholar 

  15. Milankovitch, M.: 1930, in: “Handbuch der Klimatologie”, W. Koppen and R. Geiger (Eds), Band 1, Teil A, Borntraeger, Berlin.

    Google Scholar 

  16. Milankovitch, M.M.: 1941, Canon of Insolation and the Ice-Age Problem. Beograd, Koninglich Serbische Akademie, 484 pp. ( English translation by Israel Program for Scientific Translation and published for the U.S. Department of Commerce and the National Science Foundation).

    Google Scholar 

  17. Berger, A.: 1978, Quaternary Research 9, PP. 139–167.

    Google Scholar 

  18. Emiliani, C. and Geiss, J.: 1957, Geol. Rundsch. 46, pp. 576.

    Article  Google Scholar 

  19. Zeuner, F.E.: 1959, “The Pleistocene Period: its Climate Chronology and Faunal Successions”, Hutchinson publishing group, Ltd, London.

    Google Scholar 

  20. Broecker, W.S.: 1966, Science 151, pp. 299–304.

    Article  Google Scholar 

  21. Broecker, W,S., Thurber, D.L., Goddard, J., Ku Teh-Lung, Matthews, R.K. and Mesolella, K.J.: 1968, Science 159, pp. 297–300.

    Article  Google Scholar 

  22. Broecker, W.S. and Van Donck, J.: 1970, Review of Geophysics and Space Physics 8, pp. 169–198.

    Article  Google Scholar 

  23. Ruddiman, W.F. and Mclntyre, A.: 1976, in: “Investigation of Late Quaternary Paleoceanography and paleoclimatology”, R.M. Cline and J.D. Hays (Eds), pp. 111–146, Geological Society of America, memoir 145.

    Google Scholar 

  24. Veeh, H.H. and Chappell, J.: 1970, Science 167, pp. 862–865.

    Article  Google Scholar 

  25. van den Heuvel, E.P.J.: 1966, Nature 210, pp. 363–365.

    Article  Google Scholar 

  26. Evans, P.: 1972, in: “Quaternary Geology”, International Geological Congress, 24th session, section 12, pp. 16–21, Montreal.

    Google Scholar 

  27. Fairbridge, R.W.: 1961, Annals of the New York Academy of Sciences 91, PP. 542–579.

    Article  Google Scholar 

  28. Kukla, G.J. and Kukla, H.J.: 1972, Quaternary Research 2, pp. 412–424.

    Article  Google Scholar 

  29. Mason, B.J.: 1976, Quarterly Journal of the Royal Meteorological Society 102, pp. 473–498.

    Article  Google Scholar 

  30. Johnson, R.G. and McClure, B.T.: 1976, Quaternary Research 6, pp. 325–355.

    Article  Google Scholar 

  31. Ruddiman, W.F. and Mclntyre, A.: 1979, Science 204, pp. 173–175.

    Article  Google Scholar 

  32. Ruddiman, W.F. and Mclntyre, A.: 1980, Moisture flux from the North Atlantic: amplification of Milankovitch summer-insolation forcing at a 23 000-year periodicity, in: “Workshop on paleoclimatic Reconstruction of the Northern Atlantic and Indian Oceans and Adjacent Continents over the past 500 000 years”, CNRS-NSF, Gifsur-Yvette.

    Google Scholar 

  33. Ruddiman, W.F., Molfino, B., Esmay, A. and Pokras, E.: 1981, Climatic Change 3, pp. 65–88.

    Google Scholar 

  34. Kukla, G., Berger, A., Lotti, A., Brown, J.: 1981, Nature (in press).

    Google Scholar 

  35. Kukla, G.: 1975, Nature 253, pp. 600.

    Article  Google Scholar 

  36. Vernekar, A.: 1972, Long-period Global Variations of Incoming Solar Radiation, Meteorological Monographs 12, No. 34.

    Google Scholar 

  37. Berger, A.: 1979, Il Nuovo Cimento, series 1, 2(C), pp, 63–87.

    Google Scholar 

  38. Hays, J.D., Imbrie, J., Shackleton, N.J.: 1976, Science 194, pp. 1121–1132.

    Article  Google Scholar 

  39. Berger, A., Guiot, J., Kukla, G. and Pestiaux, P.: 1980, Geologische Rundshau 70, Heft 1+2 (in press).

    Google Scholar 

  40. Imbrie, J. and Imbrie, J.Z.: 1980, Science 207, PP. 943–953.

    Article  Google Scholar 

  41. 41, Petersen, E. and Larsen, S,: 1978, Tellus 30, pp. 193–200.

    Article  Google Scholar 

  42. Kominz, M. A., Heath, G. R., Ku, T,L. and Pisias, N.G,: 1979, Earth Planet. Sci. Lett, 45, pp. 394–410.

    Article  Google Scholar 

  43. Berger, A.: 1977, Nature 269, pp. 44–45.

    Article  Google Scholar 

  44. Kominz, M.A, and Pisias, N.G,: 1979, Science 204, pp. 171–173.

    Article  Google Scholar 

  45. Hasselmann, K.: 1976, Tellus 28, pp. 473.

    Article  Google Scholar 

  46. Harrell, J. and Briskin, M.: 1980, Marine Geology 36, pp. 1–22.

    Article  Google Scholar 

  47. Shackleton, N.J,: 1981, Paleoclimatology before our Ice Age, This volume.

    Google Scholar 

  48. 48, Berger, A. and Guiot, J.: 1981, The astronomical origin of the 100 000 yr cycle, in: “Paleoclimates”, European Union of Geosciences, Strasbourg.

    Google Scholar 

  49. Wigley, T.M. L.: 1976, Nature 264, pp. 629–631.

    Article  Google Scholar 

  50. Oerlemans, J.: 1980, Nature 287, pp. 430–432.

    Article  Google Scholar 

  51. Ghil, M.: 1981, Internal climatic mechanisms participating in glaciation cycles. This volume.

    Google Scholar 

  52. 52, Benzi, R., Parisi, G., Sutera, A. and Vulpiani, A.: 1980, Stochastic resonance in climatic change (submitted).

    Google Scholar 

  53. Shackleton, N.J.: 1978, in: “Evolution of Planetary Atmospheres and Climate of the Earth”, pp. 49–58, CNES, Nice.

    Google Scholar 

  54. Woillard, G.: 1979, Nature 281, pp. 558–562.

    Article  Google Scholar 

  55. Pollard, D., Ingersoll, A.P. and Lockwood, J.G.: 1980, Tellus 32, pp. 301–319.

    Article  Google Scholar 

  56. Dansgaard, W.: 1981, in: “Whither our Climate”, H. Flohn and R. Fantechi (Eds), Commission des Communautes Europeennes, Bruxelles (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Berger, A.L. (1981). The Astronomical Theory of Paleoclimates. In: Berger, A. (eds) Climatic Variations and Variability: Facts and Theories. NATO Advanced Study Institutes Series, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8514-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8514-8_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8516-2

  • Online ISBN: 978-94-009-8514-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics