Effect of Mass Gain on Stellar Evolution

  • R. Ebert
  • H. Zinnecker
Part of the Astrophysics and Space Science Library book series (ASSL, volume 89)


In this paper we present a fully hydrodynamical treatment of the stationary isothermal accretion problem onto a moving gravitating point mass. The derivation is purely analytical. We find that the accretion rate is more than a factor of 50 higher than the accretion rate derived from the partially non-hydrodynamical treatment by Hoyle and Lyttleton (1939) or Bondi and Hoyle (1944). This result may have some bearing on the evolutionary tracks of young pre-Main Sequence stars still embedded in their parent protocluster cloud. We discuss the work by Federova (1979) who investigated the pre-Main Sequence evolution of degenerate low mass ‘stars’ with strong accretion of protocluster cloud material. We suggest that the stars which lie below the Main Sequence in young clusters could strongly accrete matter at the pre-Main Sequence stage.

Also we suggest that the observd lack of low mass stars in open galactic clusters (van den Bergh 1961) compared to the field may be due to the accretio of residual gas preferentially by low mass stars.


Mass Gain Accretion Rate Stellar Wind Stellar Evolution Stream Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bash, R.N., Green, E., and Peters, W.L. (1977), Ap. J. 217, 464.ADSCrossRefGoogle Scholar
  2. Bondi, H. (1952), M.N.R.A.S. 112, 195.MathSciNetADSGoogle Scholar
  3. Bondi, H. and Hoyle, F. (1944), M.N.R.A.S. 104, 273.ADSGoogle Scholar
  4. Castellani, V. and Panagia, N. (1972) Ap. amp; Sp. Sci. 15, 462.ADSCrossRefGoogle Scholar
  5. Chia, T.T. (1978), M.N.R.A.S. 185, 561.ADSGoogle Scholar
  6. Chia, T.T. (1979), M.N.R.A.S. 188, 75.ADSGoogle Scholar
  7. Dodd, K.N. (1953), Proc. Cambridge Phil.Soc. 49, 486.MathSciNetADSMATHCrossRefGoogle Scholar
  8. Dodd, K.N. and McCrea, W.H. (1952), M.N.R.A.S. 112, 205.ADSGoogle Scholar
  9. Ebert, R. (1952), Diplomarbeit, Univers. GöttingenGoogle Scholar
  10. Ebert, R., von Hoerner, S., and Temesvary, S. (1960), Die Ent- stehung von Sternen durch Kondensation diffuser Materie, Springer-Verlag, Berlin, S. 184.Google Scholar
  11. Fahr, H.J. (1980), Mitt. Astron. Ges. 47, 233 (in German).ADSGoogle Scholar
  12. Federova, A.V. (1979), Nauchnije Informatsii 46, 22 (in Russian).ADSGoogle Scholar
  13. Herbig, G.H. (1977), Ap.J. 214, 747.ADSCrossRefGoogle Scholar
  14. Hoyle, F. and Lyttleton, R.A. (1939), Proc. Cambr.Phil.Soc. 35, 405.ADSCrossRefGoogle Scholar
  15. Hunt, R. (1971), M.N.R.A.S. 154, 141.ADSGoogle Scholar
  16. Hunt, R. (1979), M.N.R.A.S. 188, 83.ADSGoogle Scholar
  17. Kumar, S. (1963), Ap. J. 137, 1121.ADSCrossRefGoogle Scholar
  18. McCrea, W.H. (1953), M.N.R.A.S. 113, 162.ADSGoogle Scholar
  19. Miller, G.E. and Scalo, J.M. (1978), P.A.S.P. 90, 506.ADSCrossRefGoogle Scholar
  20. Norman, C. and Silk, J. (1980), Ap. J. 238, 158.ADSCrossRefGoogle Scholar
  21. Penston, M.V., Mann, M.F. StJ., and Ward, M.J. (1976), M.N.R.A.S. 174, 449.ADSGoogle Scholar
  22. Scalo, J.M. (1978), Protostars and Planets, University of Arizona Press, ed. T. Gehrels, p. 265.Google Scholar
  23. Spiegel, E. (1970), Interstellar Gas Dynamics, IAU-Symp. N° 39, ed. H. Habing, p. 201.Google Scholar
  24. Spitzer, L. (1978), Physical Processes in the Interstellar Medium, Wiley, New York, p. 275.Google Scholar
  25. Van den Bergh, S. (1961), Ap, J. 134, 553.ADSCrossRefGoogle Scholar
  26. Zinnecker, H. (1980), Ph.D. Thesis, in preparation.Google Scholar

Copyright information

© D. Reidel Publishing Company 1981

Authors and Affiliations

  • R. Ebert
    • 1
  • H. Zinnecker
    • 2
  1. 1.Institut für Theoretische PhysikUniversität WürzburgGermany
  2. 2.Max-Planck-Institut für Physik und Astrophysik Institut für Extraterrestrische PhysikGarchingGermany

Personalised recommendations