Skip to main content

Analytic Energy Gradients for Open-Shell Restricted-Hartree-Fock, Limited Multiconfiguration Scf, and Large Scale Configuration Interaction Wavefunctions.

  • Conference paper
Computational Theoretical Organic Chemistry

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 67))

  • 196 Accesses

Abstract

Analytic derivatives of the energy with respect to nuclear coordinates are exceedingly useful in the optimization of equilibrium and transition state geometries and in the characterization of the stationary points on potential energy surfaces via vibrational analyses (1). However, until quite recently the use of such gradients was somewhat restricted as the gradient method had been developed in detail for only closed-shell single determinant SCF (2) or open-shell unrestricted Hartree-Fock wavefunctions (3). The restriction to these methods would not allow even a qualitatively correct treatment of many reactions such as those for which orbital symmetry considerations suggest a “forbiddenness” due to an orbital crossing or of many unusual free radicals of interest in physical organic chemistry. Within the last two years, the analytic energy gradient approach has been extended to the open-shell restricted Hartree-Fock method (4) to avoid difficulties sometimes encountered with the UHE approach in which the wavefunction is not an eigenfunction of S2 . Certain limited multiconfigu-ration self-consistent-field gradient methods (4,5) have also been developed and applied which allow for a qualitatively correct description of Woodward-Hoffmann forbidden processes and of radicals such as trimethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Pulay in Modem Theoretical Chemistry, edited by H.F. Schae-fer III (Plenum, New York, 1977), Vol. 4, pp. 153–185.

    Google Scholar 

  2. P. Pulay: 1969, Mol. Phys., 17, pp. 197.

    Article  CAS  Google Scholar 

  3. For example: P. Botschwina: 1974, Chem. Phys. Lett., 29, pp. 98.

    Google Scholar 

  4. J.D. Goddard, N.C. Handy and H.F. Schaefer III: 1979, J. Chem. Phys., 71, pp. 1525.

    Article  CAS  Google Scholar 

  5. S. Kato and K. Morokuma: 1979, Chem. Phys. Lett., 65, pp. 19.

    Article  CAS  Google Scholar 

  6. B.R. Brooks, W.D. Laidig, P. Saxe, N.C. Handy and H.F. Schaefer III: 1980, Physica Scripta, 21, pp. 312.

    Article  CAS  Google Scholar 

  7. B.R. Brooks, W.D. Laidig, P. Saxe, J.D. Goddard and H.F. Schaefer III in Proceedings of the Conference on the Unitary Group for the Evaluation of Electronic Energy Matrix Elements. Bielefeld, W. Germany (1979). J. Hinge, editor, Springer-Verlag Lecture Notes Series.

    Google Scholar 

  8. B.R. Brooks, W.D. Laidig, P. Saxe, J.D. Goddard, Y. Yama-guchi and H.F. Schaefer III: 1980, J. Chem. Phys., 72, pp. 4652.

    Article  CAS  Google Scholar 

  9. A more specialized formulation for the gradient of CI wave-functions which will not be discussed here is also available: R. Krishman, H.B. Schlegel and J.A. Pople: 1980, J. Chem. Phys., 72, pp. 4654.

    Article  Google Scholar 

  10. F.W. Bobscowicz and W.A. Goddard III in Modern Theoretical Chemistry edited by H.F. Schaefer III (Plenum, New York, 1977), Vol. 3, pp. 79–129.

    Google Scholar 

  11. Reference 10, p. 91.

    Google Scholar 

  12. W.A. Goddard III, T.H. Dunning and W.J. Hunt: 1969, Chem. Phys. Lett., 4, pp. 231.

    Article  CAS  Google Scholar 

  13. For example: P. Pulay, TEXAS. An Ab Initio Gradient (Force) Program, Austin, Texas, 1976.

    Google Scholar 

  14. M. Dupuis and H.F. King: 1978, J. Chem. Phys., 68, pp. 3998.

    Article  CAS  Google Scholar 

  15. See also the article by H.B. Schlegel in this volume.

    Google Scholar 

  16. J.H. Meadows and H.F. Schaefer III: 1976, J. Chem. Soc., 98, pp. 4383.

    Article  CAS  Google Scholar 

  17. B.R. Brooks and H.F. Schaefer III: 1979, J. Chem. Phys., 70, pp. 5092.

    Article  CAS  Google Scholar 

  18. Although not discussed in this article, the two-particle density matrix also plays a central role in a scheme for large scale MCSCF computations. See: B.R. Brooks, W.D. Laidig, P. Saxe, and H.F. Schaefer III: 1980, J. Chem. Phys., 72, pp. 3837.

    Google Scholar 

  19. For example: M. Moshinsky Group Theory and the Many-Body Problem (Gordon and Breach, New York, 1968).

    Google Scholar 

  20. J. Paldus in Theoretical Chemistry: Advances and Perspectives. Vol. 2, H. Eyring and D.J. Henderson, eds. (Academic, New York, 1976), pp. 131.

    Google Scholar 

  21. I. Shavitt: 1977, Int. J. Quantum Chem. Symp., 11, pp. 131.

    Google Scholar 

  22. I. Shavitt: 1978, Int. J. Quantum Chem. Symp., 12, pp. 5.

    CAS  Google Scholar 

  23. I. Shavitt: 1979, Chem. Phys. Lett., 63, pp. 421.

    Google Scholar 

  24. A. Bunge: 1970, J. Chem. Phys., 53, pp. 20.

    Article  CAS  Google Scholar 

  25. J. Gerratt and I. Mills: 1968, J. Chem. Phys., 49, pp. 1719.

    Article  Google Scholar 

  26. R. McWeeny and B.T. Sutcliffe. Methods of Molecular Quantum Mechanics. (Academic Press, London, 1969).

    Google Scholar 

  27. J.A. Pople, R. Krishnan, H.B. Schlegel and J.S. Binkley: 1979, Int. J. Quantum Chem. Symp., 13, pp. 225.

    CAS  Google Scholar 

  28. E.R. Davidson: 1975, J. Comput. Phys., 17, pp. 87.

    Article  Google Scholar 

  29. Y. Yamaguchi and H.F. Schaefer III: J. Chem. Phys., in press.

    Google Scholar 

  30. J.D. Goddard, Y. Yamaguchi and H.F. Schaefer III: J. Chem. Phys., in press.

    Google Scholar 

  31. S. Huzinaga: 1965, J. Chem. Phys., 42, pp. 1293.

    Article  Google Scholar 

  32. T.H. Dunning: 1970, J. Chem. Phys., 53, pp. 2823.

    Article  CAS  Google Scholar 

  33. J.N. Murrell and K.J. Laidler: 1968, Trans. Faraday Soc., 64, pp. 371.

    Article  CAS  Google Scholar 

  34. Earlier work is referenced in: J.D. Goddard and H.F. Schaefer III: 1979, J. Chem. Phys., 70, pp. 5117.

    Article  CAS  Google Scholar 

  35. P. Saxe, Y. Yamaguchi, P. Pulay and H.F. Schaefer III: 1980, J, Am. Chem. Soc., 102, pp. 3718.

    Article  CAS  Google Scholar 

  36. E.R. Davidson, in The World of Quantum Chemistry, edited by R. Daudel and B. Pullman (Reidel, Dordrecht, Holland, 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

Goddard, J.D. (1981). Analytic Energy Gradients for Open-Shell Restricted-Hartree-Fock, Limited Multiconfiguration Scf, and Large Scale Configuration Interaction Wavefunctions.. In: Csizmadia, I.G., Daudel, R. (eds) Computational Theoretical Organic Chemistry. NATO Advanced Study Institutes Series, vol 67. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8472-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8472-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8474-5

  • Online ISBN: 978-94-009-8472-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics