Skip to main content

Rotational Barriers in Vinyl Compounds

  • Conference paper
Computational Theoretical Organic Chemistry

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 67))

  • 187 Accesses

Abstract

The potential energy curve for vinyl group rotation in vinylcyclohexane, calculated using the STO-3G basis set and standard geometries from the MONSTERGAUSS program, reveals s-trans, gauche and s-cis minima with relative energies of 0.0, 5.0 and 3.2 kcal/mol, resp. The barrier to rotation from the s-trans to the gauche conformer is 5.3 kcal/mol. Similar calculations for 1, 3-butadiene reveal only s-trans and gauche minima, 3.5 kcal/mol apart, with a barrier of 6.9 kcal/mol between them. Complete geometry optimization in 1, 3-butadiene leads to only s-trans and s-c i s minima. They are 1.83 kcal/mol apart and the barrier between them is 5.6 kcal/mol. These values are both lower than those, 2.05 and 6.73 kcal/mol, resp., reported by Radom and Pople.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gropen, O., and Scip, H.M.: 1971, Chem. Phys. Letters 11, pp. 445–449, point out the failure of the CNDO/2 method in predicting barriers to rotation, conformations, and bond lengths in some conjugated systems.

    Article  CAS  Google Scholar 

  2. De Maré, G.R., and Martin, J.S.: 1966, J. Amer. Chem. Soc. 88, pp. 5033–5034.

    Article  Google Scholar 

  3. De Mare, G.R., Lapaille, S., Kispert, L.D., and Pittman Jr, C.U.: 1973, J. Mol. Struct. 17, pp. 417–420.

    Article  Google Scholar 

  4. De Maré, G.R., and Lapaille, S.: 1980, Org. Magn. Resonance 13, pp. 75–76.

    Article  Google Scholar 

  5. Hehre, W.J.: 1972, J. Amer. Chem. Soc. 94, pp. 6592–6597.

    Article  CAS  Google Scholar 

  6. Peterson, M.R., and Poirier, R.A.: 1980, “Program MONSTERGAUSS”, U. of Toronto, Canada.

    Google Scholar 

  7. Hehre, W.J., Stewart, R.F., and Pople, J.A.: 1969, J. Chem. Phys. 51, pp. 2657–2664.

    Article  CAS  Google Scholar 

  8. Radom, L., and Pople, J.A.: 1970, J. Amer. Chem. Soc. 92, pp. 4786–4795.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

De Maré, G.R. (1981). Rotational Barriers in Vinyl Compounds. In: Csizmadia, I.G., Daudel, R. (eds) Computational Theoretical Organic Chemistry. NATO Advanced Study Institutes Series, vol 67. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8472-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8472-1_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8474-5

  • Online ISBN: 978-94-009-8472-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics