Skip to main content

Triplet Oxiranes : Application of Quantum Mechanical Methods to the Study of the Reactions of Triplet Isomeric Oxiranes

  • Conference paper
  • 189 Accesses

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 67))

Abstract

The thermal and photochemical reactions of simple oxiranes are reviewed. Molecular unrestricted Hartree-Fock calculations with geometry optimization have been carried out on eight triplet C3H6O isomers considered to be possible intermediates in the 0(3P) + propylene and in the Hg 6(3P1) sensitization of methyloxirane. The computed thermodynamic stabilities reveal that four of these species are available in the former while all eight are accessible in the latter reaction. The isomer CH(CH3)-CH2O (MO1) is more stable than OCH(CH3)- CH2 (MO2) giving a satisfactory explanation for the observation that propionaldehyde is the major carbonyl product in the O (3P) + propylene reaction. The energy surfaces E(θ12) for MO1 and MO2, and the energy hy-persurfaces E(θ123) for CH(CH3)-O-CH2 (MO3), acetone and propionaldehyde were generated and the surfaces analyzed for the location and relative energies of the critical points (minima, saddle points and maxima). The overall stereochemical finding was that MO1,MO2, and MO3 possess rather flexible structures. For acetone and propionaldehyde, the barriers to inversion at the carbonyl group are 2.7 and 4.2 kcal/mol, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Graedel, T.E.: 1978, “CHEMICAL COMPOUNDS IN THE ATMOSPHERE”, pp. 267, 272.

    Google Scholar 

  2. Bootman, J., Lodge, D.C., and Whalley, H.E.: 1979, Muta. Res. 67, pp. 101–112.

    Article  CAS  Google Scholar 

  3. Cvetanovic, R.J.: 1955, Canad. J. Chem. 33, pp. 1684–1695.

    Article  CAS  Google Scholar 

  4. Cvetanovic, R.J.: 1963, Advan.Photochem. 1, pp. 115–149.

    Article  Google Scholar 

  5. Furuyama, S., Atkin-son, R., Colussi, A.J., and Cvetanovic, R.J.: 1974, Intern. J. Chem. Kinetics 6, pp. 741–751.

    Article  CAS  Google Scholar 

  6. Mezey, P., Kari, R.E., Denes, A.S., Csizmadia, I.G., Gosavi, R.K., and Strausz, O.P.: 1975, Theo-ret. Chim. Acta 36, pp. 329–338.

    Article  CAS  Google Scholar 

  7. Strausz, O.P., Gosavi, R.K., Robb, M.A., Eade, R., and Csizmadia, I.G.: 1977, Prog. Theoret. Org. Chem. 2, pp. 248–260.

    CAS  Google Scholar 

  8. Scheer, M.D., and Klein, R.: 1969, J. Phys. Chem. 73, pp. 597–601.

    Article  CAS  Google Scholar 

  9. Klein, R., and Scheer, M.D.: 1969, J. Phys. Chem. 73, pp. 1598–1599.

    Article  CAS  Google Scholar 

  10. Scheer, M.D., and Klein, R.: 1970, J. Phys. Chem. 74, pp. 2732–2733.

    Article  CAS  Google Scholar 

  11. Special report: 1979, C & EN’S Top fifty Chemical products, Chem. Eng. News, May 7, pp. 22–27.

    Google Scholar 

  12. Key Chemicals, Chem. Eng. News, 1980, June 16, pp. 11, 13.

    Google Scholar 

  13. Benson, S.W.: 1964, J. Chem. Phys. 40, pp. 105–111.

    Article  CAS  Google Scholar 

  14. Blades, A.T.: 1968, Canad. J. Chem. 46, pp. 3283–3284.

    Article  CAS  Google Scholar 

  15. Yamaguchi, K., Yabushita, S., Fueno, T., Kato, S., and Morokuma, K.: 1980, Chem. Phys. Letters 70, pp. 27–30.

    Article  CAS  Google Scholar 

  16. Phibbs, M.K., Darwent, B.deB., and Steacie, E.W.R.: 1948, J. Chem. Phys. 16, pp. 39–44.

    Article  CAS  Google Scholar 

  17. Cvetanovic, R.J.: 1955, J. Chem. Phys. 23, pp. 1375–1380.

    Article  CAS  Google Scholar 

  18. Gomer, R., and Noyes Jr., W.A.: 1950, J. Amer. Chem. Soc. 72, pp. 101–108.

    Article  CAS  Google Scholar 

  19. Roquitte, B.C.: 1966, J. Chem. Phys. 70, pp. 2699–2702.

    Article  CAS  Google Scholar 

  20. Kawasaki, M., Ibuki, T., Iwasaki, M., and Takazaki, Y.: 1973, J. Chem. Phys. 59, pp. 2076–2082.

    Article  CAS  Google Scholar 

  21. Sidhu, K.S.: 1965, Ph.D. Thesis, U. of Alberta, Edmonton, Canada

    Google Scholar 

  22. Fowles, P., de Sorgo, M., Yarwood, A.J., Strausz, O.P., and Gunning, H.E.: 1967, J. Amer. Chem. Soc. 89, pp. 1352–1362.

    Article  CAS  Google Scholar 

  23. Gesser, H.: cited in reference 3(a) and private communication.

    Google Scholar 

  24. Phibbs, M.K., and Darwent, B.deB.: 1950, Canad. J. Res. B28, pp. 395–402.

    Article  Google Scholar 

  25. Jakubowski, E., Ahmed, M.G., Lown, E.M., Sandhu, H.S., Gosavi, R.K., and Strausz, O.P.: 1974, J. Amer. Chem. Soc. 94, pp. 4094–4101.

    Article  Google Scholar 

  26. Lown, E.M., Sandhu, H.S., Gunning, H.E., and Strausz, O.P.: 1969, J. Amer. Chem. Soc. 90, pp. 7164–7165.

    Article  Google Scholar 

  27. Lossing, F.P.: 1957, Canad. J. Chem. 35, pp. 305–314.

    Article  CAS  Google Scholar 

  28. Calvert, J.G., and Pitts, J.N.: 1966, “PHOTOCHEMISTRY,” Wiley, p. 371.

    Google Scholar 

  29. Neeley, C.M.: 1969, “KINETICS OF THE MERCURY-SENSITIZED DECOMPOSITION OF ETHYLENE AND PROPYLENE OXIDES,” Ph.D. Thesis, U. of Arkansas, U.S.A.

    Google Scholar 

  30. De Mare, G.R., and Strausz, O.P.: 1979, “THE MERCURY PHOTOSENSITIZATION OF OXIRANE IN THE GAS PHASE,” in “PROBLEMS OF CHEMICAL KINETICS,” collected papers from the Symposium in honour of Academician N.N. Semenov on the occasion of his 80th birthday, Moscow, April 12–14, 1976, Hayka, Moscow, pp. 38-46.

    Google Scholar 

  31. De Maré, G.R.: 1977, J. Photochem. 7, pp. 101–106.

    Article  Google Scholar 

  32. Kanofsky, J.R., and Gutman, D.: 1972,. Chem. Phys. Letters 15, pp. 236–239.

    Article  CAS  Google Scholar 

  33. Cvetanovic, R.J.: 1955, J. Chem. Phys. 23, pp. 1208–1214, gives σ2(oxirane) = 2.7 Å2 compared to 22 Å2 for σ2(C2H4) and 3.6 Å2 for n-butane.

    Article  CAS  Google Scholar 

  34. De Maré, G.R., Walker, L.G., Strausz, O.P., and Gunning, H.E.: 1966, Canad. J. Chem. 44, pp. 457–460.

    Article  Google Scholar 

  35. Cvetanovic, R.J.: 1964, Prog. Reac. Kinetics 2, pp. 39–130.

    CAS  Google Scholar 

  36. Cvetanovic, R.J.: 1958, Canad. J. Chem. 36, pp. 623–634.

    Article  CAS  Google Scholar 

  37. Hirokami, S., and Cvetanovic, R.J.: 1974, J. Amer. Chem. Soc. 96, pp. 3738–3746, and references cited therein.

    Article  CAS  Google Scholar 

  38. Orlov, V.N., and Ponomarev, A.N.: 1966, Kinet. Catal. 7, pp. 372–375.

    Google Scholar 

  39. Hughes, A.N., Scheer, M.D., and Klein, R.: 1966, J. Phys. Chem. 70, pp. 798–805.

    Article  CAS  Google Scholar 

  40. Klein, R., and Scheer, M.D.: 1968, J. Phys. Chem. 72, pp. 616–622.

    Article  CAS  Google Scholar 

  41. Cvetanovic, R.J., and Doyle, L.C.: 1957, Canad. J. Chem. 35, pp. 605–612.

    Article  CAS  Google Scholar 

  42. Strausz, O.P., Gosavi, R.K., De Mare, G.R., and Csizmadia, I.G.: 1979, Chem. Phys. Letters 62, pp. 339–340.

    Article  CAS  Google Scholar 

  43. Yamaguchi, K., Nishio, A., Yabushita, S., and Fueno, T.: 1977, Chem. Letters p. 1479; cited in reference 9.

    Google Scholar 

  44. Gray, P., and Williams, A.: 1959, Trans. Far. Soc. 55, pp. 760–777.

    Article  CAS  Google Scholar 

  45. Bigot, B., Sevin, A., and Devaquet, A.: 1979, J. Amer. Chem. Soc. 101, pp. 1095–1100.

    Article  CAS  Google Scholar 

  46. Bigot, B., Sevin, A., and Devaquet, A.: 1979, J. Amer. Chem. Soc. 101, pp. 1101–1106.

    Article  CAS  Google Scholar 

  47. Hehre, W.J., Stewart, R.F., and Pople, J.A.: 1969, J. Chem. Phys. 51, pp. 2657–2664.

    Article  CAS  Google Scholar 

  48. Hehre, W.J., Lathan, W.A., Ditchfield, R., Newton, M.D., and Pople, J.A.: 1973, QCPE No. 236, U. of Indiana, Bloomington, Indiana, U.S.A.

    Google Scholar 

  49. Strausz, O.P., Gosavi, R.K., De Maré, G.R., Peterson, M.R., and Csizmadia, I.G.: 1980, Chem. Phys. Letters 70, pp. 31–35.

    Article  CAS  Google Scholar 

  50. Barr, A.J., Goodnight, J.H., Sall, J.P., and Helwig, J.T.: “SAS76”, SAS Institute Inc., P.O. Box 10066, Raleigh, NC27605, U.S.A.

    Google Scholar 

  51. Powell, M.J.D.: Program VA05AD, Harwell Subroutine Library, Atomic Energy Establishment, Harwell, G.B.

    Google Scholar 

  52. Davidon, W.C.: 1975, Mathematical Programming, 25, p.l. The routine is described in Technical Memos 303 and 306, Davidon, W.C., and Nazareth, L., Argonne National Laboratories, Argonne, I1., U.S.A.

    Google Scholar 

  53. Schlegel, H.B.: 1975, Program FORCE, Ph.D. Thesis, Queen’s University, Kingston, Ontario, Canada.

    Google Scholar 

  54. Peterson, M.R., and Poirier, R.A.: 1980, Program MONSTERGAUSS, U. of Toronto, Toronto, Canada. The program incorporates the GAUSSIAN 70 (ref. 37) integral and SCF routines, analytic energy gradients (ref. 42) and automatic geometry optimization, with or without constraints, by the OC (ref. 41) or VA05AD (ref. 40) techniques.

    Google Scholar 

  55. Radom, L., Lathan, W.A., Hehre, W.J., and Pople, J.A.: 1971, J. Amer. Chem. Soc. 93, pp. 5339–5342.

    Article  CAS  Google Scholar 

  56. The triplet energy of acetone is 78 kcal/mol (Schmidt, M.W., and Lee, E.K.C.: 1970, J. Amer. Chem. Soc. 92, 3579-3586). The heat of formation of acetone is-51.7 kcal/mol and that of methyl-oxirane was calculated to be −22 ± 2 kcal/mol from group additivity rules (Benson, S.W.: 1968, “THER-MOCHEMICAL KINETICS,” John Wiley and Sons; Janz, G.J.: 1967, “THERMODYNAMIC PROPERTIES OF ORGANIC COMPOUNDS,” Academic Press).

    Google Scholar 

  57. Bouma, W.J., Vincent, M.A., and Radom, L.: 1978, Intern. J. Quantum Chem. 14, pp. 767–777.

    Article  CAS  Google Scholar 

  58. De Mare, G.R., Peterson, M.R., Csizmadia, I.G., and Strausz, O.P.: 1980, J. Comp. Chem. 1, pp. 141–148.

    Article  Google Scholar 

  59. Peterson, M.R., De Maré, G.R., Csizmadia, I.G., and Strausz, O.P.; to be published.

    Google Scholar 

  60. Peterson, M.R., and Csizmadia, I.G.: 1978, J. Amer. Chem. Soc. 100, pp. 6911–6916.

    Article  CAS  Google Scholar 

  61. Radom, L., Lathan, W.A., Hehre, W.J., and Pople, J.A.: 1972, Aust. J. Chem. 25, pp. 1601–1612.

    Article  CAS  Google Scholar 

  62. Albini, A., and Arnold, D.R.: 1978, Canad. J. Chem. 56, pp. 2985–2993.

    Article  CAS  Google Scholar 

  63. Allinger, N.L., and Hickey, M.J.: 1972, Tetrahedron 28, pp. 2157–2161.

    Article  CAS  Google Scholar 

  64. Fately, W.G., and Miller, F.A.: 1962, Spectro-chim. Acta 18, pp. 977–993.

    Google Scholar 

  65. Nelson, R., and Pierce, L.: 1965, J. Molec. Spect. 18, pp. 344–352.

    Article  CAS  Google Scholar 

  66. Swalen, J.D., and Costain, C.C.: 1959, J. Chem. Phys. 31, pp. 1562–1574.

    Article  CAS  Google Scholar 

  67. Allinger, N.L., and Hickey, M.J.: 1973, J. Molec. Struct. 17, pp. 233–237.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

De Maré, G.R. (1981). Triplet Oxiranes : Application of Quantum Mechanical Methods to the Study of the Reactions of Triplet Isomeric Oxiranes. In: Csizmadia, I.G., Daudel, R. (eds) Computational Theoretical Organic Chemistry. NATO Advanced Study Institutes Series, vol 67. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8472-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8472-1_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8474-5

  • Online ISBN: 978-94-009-8472-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics