Skip to main content

Quantitative Orbital Analysis of Structural Problems at the Ab-Initio Scf-Mo Level

  • Conference paper
Computational Theoretical Organic Chemistry

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 67))

Abstract

Qualitative Perturbational Molecular Orbital (PMO) procedures have prooved to be a very useful instrument for analysing the energy effects associated with the orbital interactions occurring between the component fragments and for understanding a variety of chemical-problems (1–7). The methodology employed in these studies is founded upon One Electron Molecular Orbital (OEMO) theory and usually involves the following steps: (i) sequential dissection of the molecule under consideration into component fragments; (ii) construction of the group MO’s of each fragment; (iii) evaluation of the interaction energy which obtains in the course of the union of the component fragments to yield the composite system in a specified geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. Hoffmann, R.: 1971, Acc. Chem. Res. 4, pp. 1–9.

    Article  CAS  Google Scholar 

  2. Epiotis, N.D.: 1973, J. Am. Chem. Soc. 95, pp. 3087–3096.

    Article  CAS  Google Scholar 

  3. Lowe, J.P.: 1973, Science 179, pp. 527–532.

    Article  CAS  Google Scholar 

  4. Hoffmann, R., Levin, C.C., and Moss, R.A.: 1973, J. Am. Chem. Soc. 95, pp. 629–631.

    Article  CAS  Google Scholar 

  5. Hehre, W.J., and Salem, L.: 1973, Chem. Comm., pp. 754–755.

    Google Scholar 

  6. Eisenstein, O., Anh, N.T., Jean, Y., Devaquet, A., Cantacuzene, J., and Salem, L.: 1974, Tetrahedron 30, pp. 1717–1723.

    Article  CAS  Google Scholar 

  7. Epiotis, N.D., Cherry, W.R., Shaik, S., Yates, R.L., and Ber-nardi, F.: 1977, Top. Curr. Chem. 70.

    Google Scholar 

  8. Baird, N.C.: 1970, Theor. Chim. Acta 16, pp. 239–242.

    Article  CAS  Google Scholar 

  9. Muller, C., Schweig, A., and Vermeer, H.: 1974, Angew. Chem., Int. Ed. Engl. 13, pp. 273.

    Article  Google Scholar 

  10. Whangbo, M.H., Schlegel, H.B., and Wolfe, S.: 1977, J. Am. Chem. Soc. 99, pp. 1296–1304.

    Article  CAS  Google Scholar 

  11. Whangbo, M.H., and Wolfe, S.: 1977, Can. J. Chem. 55, pp. 2778–2787.

    Article  CAS  Google Scholar 

  12. Wolfe, S., Mitchell, D.J., and Whangbo, M.H.: 1978, J. Am. Chem. Soc. 100, pp. 3698–3706.

    Article  Google Scholar 

  13. Bernardi, F., Bottoni, A., Epiotis, N.D., and Guerra, M.: 1978, J. Am. Chem. Soc. 100, pp. 6018–6022.

    Article  CAS  Google Scholar 

  14. Bernardi, F., Bottoni, A., and Epiotis, N.D.: 1978, J. Am. Chem. Soc. 100, pp. 7205–7209.

    Article  CAS  Google Scholar 

  15. Bernardi, F., Bottoni, A., and Tonachini, G.: 1979, Theor. Chim. Acta 52, pp. 37–43.

    Article  CAS  Google Scholar 

  16. Lathan, W.A., Curtiss, L.A., Hehre, W.J., Lisle, J.B., and Pople, J.A.: 1974, Progr. Phys. Org. Chem. 11, pp. 175.

    Article  CAS  Google Scholar 

  17. Bernardi, F., and Bottoni, A.: Theor. Chim. Acta, submitted for publication.

    Google Scholar 

  18. Boys, S.F.: 1960, Rev. Mod. Phys. 32, pp. 296–299.

    Article  CAS  Google Scholar 

  19. Boys, S.F., and Foster, J.M.: 1960, Rev. Mod. Phys. ibid. 32, pp. 300–302.

    Article  Google Scholar 

  20. The fundaments of perturbation theory may be found in any quantum mechanics text. Applications to quantum chemistry are particularly well represented in: Heilbronner, E., and Bock, H., “Das HMO-Modell und Scine Anwendung”, Verlag Chemie, Wein-heim/Bergstr., 1968, and Dewar, M.J.S., “The Molecular Orbital Theory of Organic Chemistry”, Me Graw-Hill, New York, N.Y., 1969.

    Google Scholar 

  21. Imamura, A.: 1968, Mol. Phys. 15, pp. 225–237.

    Article  Google Scholar 

  22. Devaquet, A.: 1970, Mol. Phys. 18, pp. 233–247.

    Article  CAS  Google Scholar 

  23. Basilevsky, M.V., and Berenfeld, M.M.: 1972, Int. J. Quantum Chem. 6, pp. 555–574.

    Article  Google Scholar 

  24. Hehre, W.J., Stewart, R.F., and Pople, J.A.: 1969, J. Chem. Phys. 51, pp. 2657–2664.

    Article  CAS  Google Scholar 

  25. Hehre, W.J., Lathan, W.A., Ditchfield, R., Newton, M.D., and Pople, J.A., Quantum Chemistry Program Exchange, N. 236, Indiana University, Bloomington, Ind.

    Google Scholar 

  26. Trombetti, A.: 1968, Can. J. Phys. 46, pp. 1006–1011.

    Article  Google Scholar 

  27. Libit, L., and Hoffmann, R.: 1974, J. Am. Chem. Soc. 96, pp. 1370–1383.

    Article  CAS  Google Scholar 

  28. Bernardi, F., and Bottoni, A.: to be published.

    Google Scholar 

  29. Bohn, R.K., and Bauer, S.H.: 1967, Inorg. Chem. 6, pp. 309–312.

    Article  CAS  Google Scholar 

  30. Epiotis, N.D., Yates, R.L., Larson, J.R., Kirmaier, C.R., and Bernardi, F.: 1977, J. Am. Chem. Soc. 99, pp. 8379–8388.

    Article  CAS  Google Scholar 

  31. Redington, R.L., Olson, W.B., and Cross, P.C.: 1962, J. Chem. Phys. 36, pp. 1311–1326.

    Article  CAS  Google Scholar 

  32. Hunt, R.H., Leacock, R.A., Peters, C.W., and Hecht, K.T.: 1965, J. Chem. Phys. 42, pp. 1931–1946.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

Bernardi, F., Bottoni, A. (1981). Quantitative Orbital Analysis of Structural Problems at the Ab-Initio Scf-Mo Level. In: Csizmadia, I.G., Daudel, R. (eds) Computational Theoretical Organic Chemistry. NATO Advanced Study Institutes Series, vol 67. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8472-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8472-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8474-5

  • Online ISBN: 978-94-009-8472-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics