Heterojunction Energy Band Lineups in Cd1-x ZnxS/Cu2S Solar Cells

  • R. Bennaceur
  • R. B. Hall
  • A. Rothwarf
Conference paper


We present a study of the heterojunction energy band lineups in Cd1-xZnxS/Cu2S Photovoltaic cells. The values of the Cd1-xZxZnxs gap Eg(x) are calculated using the Van Vechten-Phillips model with the virtual crystal approximation. Good agreement has been obtained between experimental values and this calculation. The effect of disorder has been estimated and seems to contribute little to Eg(x). The heterojunction energy band lineups have been calculated using the LCAO model of Harrison-Chadi. The zinc concentration at which ΔEC=0 is about 40% neglecting changes in the dipole contribution to ΔEc, and 20% when the dipole contribution is included; the experimental value is about 30%.


Dipole Contribution Dipole Term Dipole Layer Virtual Crystal Approximation Interface Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (a).
    NESCO FellowGoogle Scholar
  2. (b).
    Present address: Faculte des Science de Tunis, Department de Physique, Campus Universitaire du Belvedere — Tunis 1002 (TUNSIA)Google Scholar
  3. (c).
    Present address: Electrical and Computer Engineering Department, Drexel University, Philadelphia, Pennsylvania 19104Google Scholar
  4. (1).
    A. Rothwarf, European Solar Energy Conference, Berlin, 1979 p. 370.Google Scholar
  5. (2).
    A.G. Milnes and D.L. Feucht, Heterojunctions and Metal-Semiconductor Junctions, Academic Press New York (1972).Google Scholar
  6. (3).
    H. Kroemer CRC Critical Rev. Solid State Sciences 5, 555 (1975).CrossRefGoogle Scholar
  7. (4).
    W.R. Frensley and H. Kroemer, Phys. REv. B 16(6), 2642 (1977).CrossRefGoogle Scholar
  8. (5).
    W.A. Harrison, J. Vac. Sci. Technol. 14(4), 1016 (1977).CrossRefGoogle Scholar
  9. (6).
    J. A. Van Vechten, T.K. Bergstresser, Phys. Rev. B 1(8), 3351 (1970).CrossRefGoogle Scholar
  10. (7).
    J.A. Van Vechten, Phys. Rev. 187, 1007 (1969).CrossRefGoogle Scholar
  11. (8).
    J.A. Van Vechten, Phys. Rev. 182, 891 (1969).CrossRefGoogle Scholar
  12. (9).
    D.J. Chadi and M.L. Cohen Phys. Status Solidi B 68, 405 (1975).CrossRefGoogle Scholar
  13. (10).
    F. Herman and S. Skillman. Atomic Structure Calculations, (Prentice Hall New Jersey 1963).Google Scholar
  14. (11).
    L.C. Burton, etal. NSF RANN/AER 72-03478, IEC/PV/TR/76/4, 1976.Google Scholar

Copyright information

© ECSC, EEC, EAEC, Brussels and Luxembourg 1981

Authors and Affiliations

  • R. Bennaceur
    • 1
  • R. B. Hall
    • 1
  • A. Rothwarf
    • 1
  1. 1.Institute of Energy ConversionUniversity of DelawareNewarkGermany

Personalised recommendations