Skip to main content

Formation of Energy Rich Phosphate in Fenton’s Reaction

  • Conference paper
Origin of Life
  • 175 Accesses

Abstract

Mechanism and origin of the ubiquitous biological phosphorylation stays obscure since the discovery of ATP by Lohmann in 1929. Asking whether the extreme reactivity of radical intermediates could not explain such reactions, we found that up to 30% of aqueous inorganic phosphate is bound into an energy-rich oxidation product of 2-methylimidazole by oxidation with H2O2 or O2 using Fenton’s reagent. These results emphasize, that coupled energy and group transfer and self-organization requires open systems (“bioids”) driven by an adequate energy source like redox or photo-reactions, and that transfer of all, molecules (in chemical reactions), energy and information are complementary and inseparable aspects of a generalized Darwinian evolution i.e. of accumulation of information over time in such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Decker, P. and Speidel, A., Z.Naturforsch. 27b, 257(1972). (Bioids 1).

    Google Scholar 

  2. Decker, P. and Heidmann, W. in: H.Noda, Ed., “Origin of Life”, Proc. 2. ISSOL Mtg., Jap.Sei.Soc.Press, Tokyo, pp. 617–624, 1978.

    Google Scholar 

  3. Decker, P., Ann. New York Acad. Sci. 316, pp. 236–250, (1979) (Bioìds VII).

    Article  Google Scholar 

  4. Decker, P., in: DFG-Kolloquium “Evolution in Planetenat-mosphären”, Schiiersee, FRG, 2.–4.Okt. 1979, in press.

    Google Scholar 

  5. Decker, P., Evolution in offenen Systemen: prize essay submitted to the Bavarian Academy of Sciences; reprints(170pp) available from Documentation Center on the Origin of Life, Universitätsbibliothek, Ulm, FRG.; cf. Decker, P., Nachr. Chem. Tech. 23, 167 (1975).

    Google Scholar 

  6. Haken, H., Naturwissensch. 67, 121 (1980).

    Article  Google Scholar 

  7. Decker, P. and Saygin, Ö., Z. Naturforsch. 34c, 649–51(1979).

    Google Scholar 

  8. Glansdorff, P., and Prigogine, I., Thermodynamics of Structure, Stability and Fluctuations, Wiley-Interscienee, New York, 1971.

    Google Scholar 

  9. Zaikin, A.N., and Zhabotinsky, A.M., Nature 225, 535 (1970).

    Article  Google Scholar 

  10. Seelig, F.F., J. Theor. Biol. 31, 355 (1970).

    Article  Google Scholar 

  11. Decker, P., Nature New Biol. 241, 72 (1973); J. Mol. Evol. 2, 137 (1973), 4, 49 (1975); Origins of Life 6, 211 (1975) (Bioids III-VI).

    Google Scholar 

  12. Decker, P., in: D.C. Walker, Ed., Origins of Optical Activity in Nature, Elsevier, Amsterdam, pp. 109–124, 1979.

    Google Scholar 

  13. Decker, P., Pure and Applied Geophysics 112, 865 (1974)

    Article  Google Scholar 

  14. Decker, P., in: H. Noda, Ed., “Origin of Life”, Proc. 2. ISSOL Mtg., Jap. Sci. Soc. Press, Tokyo, pp. 631–637, 1978.

    Google Scholar 

  15. Lohmann, K., Naturwissensch. 17, 624 (1929).

    Google Scholar 

  16. Mitchell, P., Eur. J. Biochem. 95, 1 (1979).

    Article  Google Scholar 

  17. Lohrmann, R., and Orgel, L.E., Science 171, 490 (1971); Ponnamperuma, C., and Chang, S., in “Molecular Evolution I”, Buvet, R., and Ponnamperuma, C., North Holland p. 216, 1971.

    Article  Google Scholar 

  18. Schramm, G., Groetsch, H., and Pollman, W., Angew. Chem. Int. Ed. 1, 1 (1962); Bruice, Th. and Bencovic, S.J., Bioorganic Mechanisms, Vol. II, p. 88–98, Benjamin, New York, 1966.

    Article  Google Scholar 

  19. Degani, Ch., and Halmann, M., in: “Molecular Evolutionl”, R. Buvet and C. Ponnamperuma eds.,North Holland, p. 224, 1971.

    Google Scholar 

  20. Schwartz, A.W., in: “Molecular Evolution”, Rohlfing, D., and Oparin, A.I. eds., Plenum Press, New York, p. 129, 1972.

    Google Scholar 

  21. Wieland, Th. and Bäuerlein, E., Naturwissensch. 54,80 (1967).

    Article  Google Scholar 

  22. Clark, V.M., Hutchinson, D.W., Kirby, A.J., and Warren, S.G., Angew. Chem. 76, 704 (1964).

    Article  Google Scholar 

  23. Decker, P. and Saygin, Ö., this Congress

    Google Scholar 

  24. Saygin, Ö., Z.Naturforsch., in Press

    Google Scholar 

  25. Decker, P. and al., in Preparation

    Google Scholar 

  26. Brinigar, W.S., Knaff, D.B., and Wang, I.H., Biochemistry 6, 36 (1967).

    Article  Google Scholar 

  27. Czypski, G., and Ilan, Y.A., Photochem. Photobiol. 28, 652 (1978).

    Google Scholar 

  28. Krasna, A.I., Photochem. Photobiol. 31, 75 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 D. Reidel Publishing Company

About this paper

Cite this paper

Saygin, O., Decker, P. (1981). Formation of Energy Rich Phosphate in Fenton’s Reaction. In: Wolman, Y. (eds) Origin of Life. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8420-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8420-2_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8422-6

  • Online ISBN: 978-94-009-8420-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics