Advertisement

Origin of Life pp 143-150 | Cite as

Photoassisted Carbon Dioxide Reduction and Formation of Two- and Three-Carbon Compounds

  • M. Halmann
  • B. Aurian-Blajeni
  • S. Bloch
Conference paper

Abstract

We found that aqueous carbon dioxide, in the presence of inorganic minerals with semiconducting properties, underwent photosensitized reduction by ultraviolet and visible light - the main products being formaldehyde and methanol. Effective photoactive materials included naturally occurring minerals such as nontronite, anatase, wolframite, molybdenite, minium, cinnabar and hematite. No appreciable carbon dioxide reduction was observed in the presence of bentonite. The heterogenous photoreduction of carbon dioxide by natural semiconducting minerals could be a precursor of plant photosynthesis. Photosynthetic condensation of dilute aqueous formaldehyde solutions to glyoxal and malonaldehyde was obtained by UV-irradiation in the absence of oxygen. The malonaldehyde concentration reached its maximum after several hours and then declined. The known condensation reactions of malonaldehyde with urea or guanidines to form hydroxy -or amino-pyrimidines may be a potential prebiotic route to pyrimidines.

Keywords

Ammonium Nitrate Diffuse Reflectance Spectroscopy Cadmium Sulfide Plant Photosynthesis Carbon Dioxide Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Halmann, M., Nature, 275, 115 (1978).CrossRefGoogle Scholar
  2. 2.
    Halmann, M., and Aurian-Blajeni, B., Proceed. 2nd E.C. Photovoltaic Solar Energy Conf., Editors, Van Overstraeten, R. and Palz, W., Berlin (West), Reidel Publ., Dordrecht, 1979, p. 682.Google Scholar
  3. 3.
    Hemminger, J.C., Carr, R., and Somorjai, G.A., Chem. Phys. Lett., 57, 100 (1978).CrossRefGoogle Scholar
  4. 4.
    Inoue, T., Fujishima, A., Konishi, S. and Honda, K., Nature, 277, 637 (1979).Google Scholar
  5. 5.
    Fruge, D.R., Fong, G.D., and Fong, F.K., J. Amer. Chem. Soc., 101, 3694 (1979).CrossRefGoogle Scholar
  6. 6.
    Åkermark, B., Eklund-Westlin, U., Baekström, P., and Löf, R., Acta Chem. Scand., B 34, 27 (1980).CrossRefGoogle Scholar
  7. 7.
    Schrauzer, G.N., and Guth, T.D., J. Amer. Chem. Soc., 99, 7189 (1977).CrossRefGoogle Scholar
  8. 8.
    Bickley, R.I., and Vishwanathan, V., Nature, 280, 306 (1979).CrossRefGoogle Scholar
  9. 9.
    Pavlovskaga, T.E., and Telegina, T.A., Origins of Life, 5, 303 (1974).CrossRefGoogle Scholar
  10. 10.
    Ponnamperuma, C., and Mariner, R., Radiat. Res. 19, 183 (1963).Google Scholar
  11. 11.
    Halmann, M., and Bloch, S., BioSyst., 11, 227 (1979).Google Scholar
  12. 12.
    Levine, J.S., Kraemer, D.R., and Kuhn, W.R., Icarus, 31, 136 (1977).CrossRefGoogle Scholar
  13. 13.
    Klein, H.P., J. Geophys. Res., 82, 4677 (1977); Icarus, 34, 666 (1978).CrossRefGoogle Scholar
  14. 14.
    Snyder, C.W., J. Geophys. Res., 84, 8487 (1979).CrossRefGoogle Scholar
  15. 15.
    Horowitz, N.M., Hobby, G.L., and Hubbard, J.S., Science, 194, 1321 (1976).CrossRefGoogle Scholar
  16. 16.
    Banin, A., and Rishpon, J., Life Sciences and Space Research, Proceed. Conf. Innsbruck, Austria, 1978.Google Scholar
  17. 17.
    Trachtman, M., and Halmann, M., J. Chem. Soc., Perkin Trans. II, 132 (1977).Google Scholar
  18. 18.
    Burton, R.M., in: Methods in Enzymology, Vol. III, Editors, Colowick, S.P. and Kaplan, N.O., Academic Press, New York, 1957, p. 247.Google Scholar
  19. 19.
    Morre, J., Ann. Chim. 4, 227 (1969).Google Scholar
  20. 20.
    Strehlow, W.H., and Cook, E.L., J. Phys. Chem. Ref. Data, 2, 163 (1973).CrossRefGoogle Scholar
  21. 21.
    Bolton, J.R., Science 202, 705 (1978).CrossRefGoogle Scholar
  22. 22.
    Aurian-Blajeni, B., Halmann, M., and Manassen, J., Solar Energy, in press (1980).Google Scholar
  23. 23.
    King, T.P., Biochemistry, 5, 3454 (1966).CrossRefGoogle Scholar
  24. 24.
    Mukai, F.H., and Goldstein, B.D., Science, 191, 868 (1976).CrossRefGoogle Scholar
  25. 25.
    Reiche, H., and Bard, A.J., J. Amer. Chem. Soc., 101, 3127 (1979).CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1981

Authors and Affiliations

  • M. Halmann
    • 1
  • B. Aurian-Blajeni
    • 1
  • S. Bloch
    • 2
  1. 1.Isotope DepartmentWeizmann Institute of ScienceRehovotIsrael
  2. 2.Laboratoire Energétique BiochimiqueUniversité Paris Val-de-MarneCréteilFrance

Personalised recommendations