Tense Logic, Second-Order Logic and Natural Language

  • J. F. A. K. Van Benthem
Part of the Synthese Library book series (SYLI, volume 147)


The subject of time may be approached from many points of view. Some of these are concerned with its nature; e.g., philosophy (Kant’s Transzendentale Ästhetik), mathematics (Zeno’s Paradoxes) or physics (Theory of Relativity). Others are more methodological, so to speak, being concerned with the role of reference to time in statements or arguments. Thus, in this perspective, logic and linguistics are on the same side of the fence. (Which they have been from the time when logic turned from ontology to language.) In fact, a subject like tense logic may be considered to be an enterprise common to logicians and linguists. (Cf. [18], [12] and [17].) Still, there remains a clear difference of interest, as will be seen below.


Natural Language Modal Logic General Frame Completeness Theorem Correspondence Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Åqvist, L.: 1973, ‘Modal logic with subjunctive conditionals and dispositional predicates’, Journal of Philosophical Logic 2, 1–76.CrossRefGoogle Scholar
  2. [2]
    van Benthem, J.F.A.K.: 1976, Modal Correspondence Theory, dissertation, Universiteit van Amsterdam. (An expanded version called Modal Logic as Second-Order Logic is to appear with Ossolineum, Wrocław, 1981.)Google Scholar
  3. [3]
    van Benthem, J. F. A. K.: 1974, ‘Some correspondence results in modal logic’, Report 74–05, Mathematisch Instituut, Universiteit van Amsterdam.Google Scholar
  4. [4]
    van Benthem, J. F. A. K.: 1977, ‘Tense logic and standard logic’, Logique et Analyse 80, 395–437.Google Scholar
  5. [5]
    Enderton, H. B.: 1972, A Mathematical Introduction to Logic, Academic Press, New York.Google Scholar
  6. [6]
    Frege, G.: 1879, Begriffsschrift. Eine Formelsprache des reinen Denkens, Nebert, Halle.Google Scholar
  7. [7]
    Gallin, D.: 1975, Intensional and Higher-Order Modal Logic, North-Holland, Amsterdam.Google Scholar
  8. [8]
    Geach, P. T.: 1972, Logic Matters, Oxford.Google Scholar
  9. [9]
    Goldblatt, R. I.: 1976, Metamathematics of Modal Logic, Reports on Mathematical Logic 6 and 7.Google Scholar
  10. [10]
    Henkin, L.: 1950, ‘Completeness in the theory of types’, Journal of Symbolic Logic 15, 81–91.CrossRefGoogle Scholar
  11. [11]
    Hintikka, J.: 1974, ‘Quantifiers vs. quantification theory’, Linguistic Inquiry 5, 153–177.Google Scholar
  12. [12]
    Kamp, H.: 1971, ‘Formal properties of “Now”’, Theoria 37, 227–73.CrossRefGoogle Scholar
  13. [13]
    Lemmon, E. J. & D. Scott: 1977, Intensional Logic, K. Segerberg (ed.), Blackwell, Oxford.Google Scholar
  14. [14]
    Makinson, D. C.: 1966, ‘On some completeness theorems in modal logic’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 12, 379–384.CrossRefGoogle Scholar
  15. [15]
    McTaggart, J. M. E.: 1927, ‘The unreality of time’, in The Nature of Existence, Vol. II, Cambridge.Google Scholar
  16. [16]
    Monk, J. D.: 1976, Mathematical Logic, Springer, Berlin.Google Scholar
  17. [17]
    Needham, P.: 1975, Temporal Perspective, Filosofiska Studier 25, Uppsala.Google Scholar
  18. [18]
    Prior, A. N.: 1967, Past, Present and Future, Clarendon, Oxford.Google Scholar
  19. [19]
    Quine, W. V. O.: 1970, Philosophy of Logic, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  20. [20]
    Quine, W. V. O.: 1953, From a Logical Point of View, Harvard, Cambridge.Google Scholar
  21. [21]
    Ramsey, F. P.: 1978, The Foundations of Mathematics, Routledge & Kegan Paul, London.Google Scholar
  22. [22]
    Thomason, S. K.: 1975, ‘Reduction of second-order logic to modal logic’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 21, 107–114.CrossRefGoogle Scholar
  23. [23]
    Thomason, S. K.: 1972, ‘Semantic analysis of tense logics’, Journal of Symbolic Logic 37, 150–158.CrossRefGoogle Scholar
  24. [24]
    Vlach, F.: 1973, ‘Now ’ and ‘Then’. A Formal Study in the Logic of Tense Anaphora, dissertation, University of California at Los Angeles.Google Scholar

Copyright information

© D. Reidel Publishing Company 1981

Authors and Affiliations

  • J. F. A. K. Van Benthem

There are no affiliations available

Personalised recommendations