Introduction

  • John Happel
  • Howard Brenner
Part of the Mechanics of fluids and transport processes book series (MFTP, volume 1)

Abstract

The behavior of systems involving the motion of aggregates of small particles relative to fluids in which they are immersed covers a wide range of phenomena of interest to both scientists and engineers. Broadly speaking we may assign these processes to several classes. Particles may move together in bulk through a fluid, as in sedimentation. In turn, the particles may remain more or less stationary as in a packed bed. The relative particle-fluid motions may be more complex, as in fluidized systems. Finally, the phenomenon of suspension viscosity or resistance to shear is encountered when solid particles move relative to each other owing to shearing motion of the suspending fluid, as contrasted with situations where the fluid moves relative to the entire particle system. Many processes involving these types of motion are found in nature and technology. It is the basic purpose of this book to develop an understanding of such behavior of multiparticle systems, starting with the dynamics of single particles.

Keywords

Clay Permeability Porosity Dust Foam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Aris, R., Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1962.MATHGoogle Scholar
  2. 2.
    Bagnold, R. A., Phil. Trans. Roy. Soc. (London) 249A (1956), 235.MathSciNetADSGoogle Scholar
  3. 3.
    —, The Physics of Blown Sand and Desert Dunes. London: Methuen, 1941.Google Scholar
  4. 4.
    Basset, A. B., A Treatise On Hydrodynamics, 2 vols. (1888); New York: Dover, 1961.Google Scholar
  5. 5.
    Bird, R. B., W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, New York: Wiley, 1960.Google Scholar
  6. 6.
    Blake, F. C., Trans. Amer. Inst. Chem. Engrs. 14 (1922), 415.Google Scholar
  7. 7.
    Burgers, J. M., Proc. Koningl. Akad. Wetenschap. 45 (1942), 9.Google Scholar
  8. 8a.
    Carman, P. C., Trans. Inst. Chem. Engrs. (London) 15 (1937), 150.Google Scholar
  9. 8b.
    See also his book Carman, P. C., Flow of Gases through Porous Media. New York: Academic Press, 1956.MATHGoogle Scholar
  10. 9.
    Collins, E. R., Flow of Fluids through Porous Materials. New York: Reinhold, 1961.Google Scholar
  11. 10.
    Cunningham, E., Proc. Roy. Soc. (London) A83 (1910), 357.ADSGoogle Scholar
  12. 11.
    DallaValle, J. M., Micromeritics—The Technology of Fine Particles, 2nd ed. New York: Pitman, 1948.Google Scholar
  13. 12.
    Darcy, H. P. G., Les Fontaines Publiques de la Ville de Dijon. Paris: Victor Dalmont, 1856.Google Scholar
  14. 13.
    Drew, T. B., Handbook of Vector and Polyadic Analysis. New York: Reinhold, 1961.Google Scholar
  15. 14.
    Dryden, H. L., F. P. Murnaghan, and H. Bateman, Hydrodynamics, reprint, Bull. No. 84 Nat. Res. Counc. New York: Dover, 1956.Google Scholar
  16. 15.
    Dupuit, A. J., Traite theoretique et practique de la conduite et de la distribution des eaux. Paris: 1865.Google Scholar
  17. 16a.
    Einstein, A., Ann. Physik 19 (1906), 289ADSCrossRefGoogle Scholar
  18. 16b.
    with correction Einstein, A., Ann. Physik 34 (1911) 591. For English translation of these and related papersGoogle Scholar
  19. 16c.
    see Einstein, A., The Theory of Brownian Movement, New York: Dover, 1956.MATHGoogle Scholar
  20. 17.
    Everett, D. H., and F. S. Stone, The Structure and Properties of Porous Materials. New York: Academic Press; Butterworth’s, London,1958.Google Scholar
  21. 18.
    Fox, T. G., S. Gratch, and S. Roshaek, in Rheology—Theory and Applications, Vol. I, ed. F. R. Eirich. New York: Academic Press, 1956, Chap. 12.Google Scholar
  22. 19.
    Gaudin, A. M., Principles of Mineral Dressing. New York: McGraw-Hill, 1939.Google Scholar
  23. 20.
    Green, H. L., and W. R. Lane, Particulate Clouds, Dusts, Smokes, and Mists. London: Spon, 1957.Google Scholar
  24. 21.
    Guth, E., Proc. International Congr. Appl. Mech. (1938), pp. 448–55.Google Scholar
  25. 22.
    —, and R. Simha, Kolloid. Z. 74 (1936), 266.CrossRefGoogle Scholar
  26. 23.
    Happel, J., Trans. N. Y. Acad. Sci. 20 (1958), 404.Google Scholar
  27. 24a.
    Hermans, J. J., Flow Properties of Disperse Systems. Amsterdam: North-Holland Publishing Co.; 1953.Google Scholar
  28. 24b.
    Hermans, J. J., Flow Properties of Disperse Systems. New York: Interscience, 1953.Google Scholar
  29. 25.
    Jeffery, G. B., Proc. Roy. Soc. (London) A102 (1922), 161.ADSGoogle Scholar
  30. 26a.
    Kozeny, J., Sitz-Ber. Wiener Akad., Abt. IIa, 136 (1927), 271Google Scholar
  31. 26b.
    see also Kozeny, J., Hydraulik. Wien: Springer, 1953.Google Scholar
  32. 27.
    Kuenen, P. H., Society of Economic Paleontologists and Mineralogists, Special Publication No. 2, pp. 14–33, November, 1951.Google Scholar
  33. 28.
    Leva, M., Fluidization. New York: McGraw-Hill, 1959.Google Scholar
  34. 29.
    Ladenburg, R., Ann. d. Phys. 23 (1907), 447.ADSCrossRefGoogle Scholar
  35. 30a.
    Lamb, H., Hydrodynamics, 6th ed. Cambridge: Cambridge Univ. Press, 1932MATHGoogle Scholar
  36. 30b.
    Lamb, H., Hydrodynamics, 6th ed. New York: Dover, 1945.Google Scholar
  37. 31a.
    Lorentz, H. A., Zittingsverl. Akad. van Wet. 5 (1896), 168Google Scholar
  38. 31b.
    neu bearb.: Lorentz, H. A., Zittingsverl. Abhandl. theoret. phys. 1 (1907), 23.Google Scholar
  39. 32.
    Mill, C. C, Rheology of Disperse Systems. New York: Pergamon, 1959.MATHGoogle Scholar
  40. 33.
    Merrill, E. W., and R. E. Wells, Jr., Appl. Mech. Reviews 14 (1961), 663.Google Scholar
  41. 34.
    Oberbeck, H. A., Crelle, 81 (1876), 62.CrossRefGoogle Scholar
  42. 35.
    Oseen, C. W., Hydrodynamik. Leipzig: Akademische Verlag, 1927.MATHGoogle Scholar
  43. 36.
    Perry, J. H., Chemical Engineers’ Handbook, 3rd ed. New York: McGraw-Hill, 1950.Google Scholar
  44. 37.
    Reboux, P., Phenomenes de Fluidization. Paris: Association Française de Fluidization, 28, rue St. Dominique, 1954.Google Scholar
  45. 38.
    Richardson, E. G., Aerodynamic Capture of Particles. New York: Pergamon, 1960.Google Scholar
  46. 39.
    Rouse, H., and S. Ince, “History of Hydraulics,” State Univ. Iowa Inst. Hydraulic Res. 1957.Google Scholar
  47. 40.
    Shapiro, A. H., Shape and Flow—The Fluid Dynamics of Drag. Anchor Books: Science Study Series. New York: Doubleday, 1961.Google Scholar
  48. 41.
    Scheidegger, A. E., The Physics of Flow through Porous Media, 2nd ed. New York: Macmillan, 1960.MATHGoogle Scholar
  49. 42.
    Slichter, C. S., “Theoretical Investigation of the Motion of Ground Waters,” U. S. Geological Survey, 19th Ann. Rep., Part 2 (1899), pp. 301–384.Google Scholar
  50. 43.
    Smoluchowski, M., Bull. Intern, acad. polonaise sci. lettres, 1A (1911), 28.Google Scholar
  51. 44.
    —, 5th Intern. Congr. Math. 2 (1912), 192.Google Scholar
  52. 45.
    Steenberg, B., and B. Johansson, Svensk Papperstidning 61 (1958), 696.Google Scholar
  53. 46.
    Stokes, G. G., Trans. Cambr. Phil. Soc. 8 (1845), 287.Google Scholar
  54. 47.
    —, Trans. Cambr. Phil. Soc. 9, pt. II (1851), 8.ADSGoogle Scholar
  55. 48.
    Turkevich, J., Amer. Scientist, 47 (1959), 97.Google Scholar
  56. 49.
    Twenhofel, W. H., Treatise on Sedimentation. New York: Dover, 1960.Google Scholar
  57. 50.
    Vener, R. E., Chem. Eng. 62 (1955), 175.Google Scholar
  58. 51.
    Zenz, F. A., and D. F. Othmer, Fluidization and Fluid Particle Systems. New York: Reinhold, 1960.Google Scholar

Copyright information

© Martinus Nijhoff Publishers, The Hague 1983

Authors and Affiliations

  • John Happel
    • 1
  • Howard Brenner
    • 2
  1. 1.Department of Chemical Engineering and Applied ChemistryColumbia UniversityNew YorkUSA
  2. 2.Department of Chemical EngineeringCambridgeUSA

Personalised recommendations