Skip to main content

The Liver and Biliary Tract. Anatomical and Physiological Considerations

  • Chapter
Cholescintigraphy

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 1))

  • 67 Accesses

Abstract

The liver is the largest organ in the body weighing in the adult of 1200–1500 g comprising one fiftieth of the total body weight. It is located in the upper part of the abdomen where it occupies the right hypochondriac and the greater part of the epigastric region. A part of its surface is associated with the diaphragm. The location of the liver is dependent on the position of the body and varies with respiration. The topography is altered in some diseases and can be changed by displacement of the organ due to thoracic processes which may push the liver downwards (1). In contrast to the multilobulated liver of many mammals, the human liver is a compact and continuous mass of parenchyma. There are two anatomically distinct lobes, divided conventionally by the line of insertion of the falciform ligament. The right lobe is larger than the left lobe and has on its posterior-inferior surface two smaller lobes: the caudate and the quadrate lobes. The whole organ is covered by the fibrous capsule of Glisson. In the porta hepatis which is situated on the visceral surface of the right lobe, the branches of the hepatic artery and portal vein enter the liver and the common bile duct leaves the liver. At this point the capsule of Glisson enters into the liver following the blood vessels and biliary ducts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Villemin F, Dufour R, Rigaud A: Variations morphologiques en topographiques du foie. Arch. Mal. Appar. dig. 40: 63, 1951.

    PubMed  CAS  Google Scholar 

  2. Malpighi M, De viscerum structura exercitatio anatomica. London, 1666.

    Google Scholar 

  3. Masgagni P, Prodromo della granda Anatomia. Firenze, 1819.

    Google Scholar 

  4. Kiernan F, The anatomy and physiology of the liver. Philosoph. Tr. Roy. Soc. London, 123: 711, 1833.

    Article  Google Scholar 

  5. Mall FP, A study of the structural unit of the liver. Amer. J. Anat. 5: 227, 1906.

    Article  Google Scholar 

  6. Arey LB, On the presence of so-called portal lobules in the seal’s liver. Anat. Rec. 51: 315, 1932.

    Article  Google Scholar 

  7. Elias H, A re-examination of the structure of the mammalian liver II. The hepatic lobule and its relation to the vascular and biliary system. Amer. J. Anat. 85: 379, 1949.

    Article  PubMed  CAS  Google Scholar 

  8. Rappaport AM, Borowy ZJ, Lougheed WM, Lotto WN, Subdivision of hexagonal liver lobules into a structural and functional unit; role in hepatic physiology and pathology. Anat. Rec. 119: 11, 1954.

    Article  PubMed  CAS  Google Scholar 

  9. Rappaport AM, The structural and functional unit in the human liver (liver acinus). Anat. Rec. 130: 673, 1958.

    Article  PubMed  CAS  Google Scholar 

  10. Rappaport AM, The microcirculatory hepatic units. Microvasc. Res. 6: 212, 1973.

    Article  PubMed  CAS  Google Scholar 

  11. Grisham JW, Nopanitaya W, Compagno J, Scanning electron microscopy of the liver: a review of methods and results. In: Progress in liver diseases. Vol. V, Popper H, Schaffner F (eds), New York, Grune and Stratton, 1976, p. 1.

    Google Scholar 

  12. Hampton JP, An electron microscope study of hepatic uptake and excretion of submicroscopic particles injected into the blood stream and into the bile duct. Acta Anat. 32: 262, 1958.

    Article  PubMed  CAS  Google Scholar 

  13. Goresky CA, The transport and net removal of substances by the intact liver. In: The liver: quantitative aspects of structure and function, Baumgartner G, Preisig B (eds), Basle, S. Karger, 1973.

    Google Scholar 

  14. Segall HN, An experimental anatomical investigation of the blood and bile channels of the liver. Surg. Gynec. Obstet. 37: 152, 1923.

    Google Scholar 

  15. Hjortsjö CH, The internal topography of the liver: studies by roentgen and injection technique. Nord. Med. 38: 745, 1948.

    PubMed  Google Scholar 

  16. Gillfillan RS, Anatomic study of the portal vein and its main branches. Arch. Surg. 61: 449, 1950.

    Google Scholar 

  17. Elias H, Petty D, Cross anatomy of blood vessels and ducts within the human liver. Amer. J. Anat. 90: 59, 1952.

    Article  PubMed  CAS  Google Scholar 

  18. Bradley SE, Ingelfinger FJ, Bradley GP, Curry JJ, The estimation of hepatic blood flow in man. J. clin. Invest. 24: 890, 1945.

    Article  Google Scholar 

  19. Caesar J, Shaldon S, Chiandussi L, Guevara L, Sherlock S, The use of indocyanine green in the measurement of hepatic blood flow and as a test of hepatic function. Clin. Sci. 21: 43, 1961.

    PubMed  CAS  Google Scholar 

  20. Rees JR, Redding VJ, Ashfield R, Hepatic blood-flow measurement with Xenon-133. Evidence for separate hepatic arterial and portal venous pathways. Lancet 2: 562, 1964.

    Article  PubMed  CAS  Google Scholar 

  21. Neumayer AA, Problems of the hepatic circulation in health and disease. Gastroenterology 47: 343, 1964.

    Google Scholar 

  22. Winkler K, Larsen JA, Munker T, Tygstrup N, Determination of hepatic blood flow in man by simultaneous use of five test substances in two parts of the liver. Scand. J. clin. Lab. Invest. 17: 473, 1965.

    Google Scholar 

  23. Mackenzie RJ, Leiberman DP, Mathie GC, Rice GC, Harper AM, Blumgart LH, Liver blood flow measurement: the interpretation of Xenon-133 clearance curves. Acta chir. Scand. 142: 519, 1976.

    CAS  Google Scholar 

  24. Ueda H, Circulation of hepatic artery and portal vein. In: Aktuelle Probleme der Hepatologie, Martini GA (ed), Stuttgart, Georg Thieme Verlag, 1962.

    Google Scholar 

  25. Pabst HW, Peller P, Behringer W, Isotopenstudien über die Leberdurchbluting und ihre Beeinflussbarkeit. Klin. Wschr. 40: 505, 1962.

    Article  PubMed  CAS  Google Scholar 

  26. Novikoff AB, Essner E, The liver cell, some new approaches to its study. Amer. J. Med. 29: 102, 1960.

    Article  PubMed  CAS  Google Scholar 

  27. Fawcett DW, Observations on the cytology and electron microscopy of hepatic cells. J. nat. Cancer Inst. 15: 1475, 1955.

    PubMed  CAS  Google Scholar 

  28. Cowdry EV, The mitochondria constituents of protoplasm. Cargenie Inst. Washington, 271: 39, 1918.

    CAS  Google Scholar 

  29. Altmann HW, Allgemeine morphologische Pathologie des Cytoplasmas. Die Pathobiosen. In: Handbuch der allgemeine Pathologie, Büchner F (ed), Berlin, Springer, 1955, p. 419.

    Google Scholar 

  30. Manelidis EE, Pathological swelling and vacuolization of cells. In: Frontiers of cytology, Palay SL (ed), New Haven, Yale University Press, 1958, p. 417.

    Google Scholar 

  31. Miller LL, Bale WF, Synthesis of all plasma protein fraction except gamma globulin by the liver. J. exp. Med. 99: 125, 1954.

    Article  PubMed  CAS  Google Scholar 

  32. Porter KR, The submicroscopic morphology of protoplasm. Harvey Lect. 51: 175, 1957.

    Google Scholar 

  33. Porter KR, Bruni G, An electron microscopic study of the early effects of 3′-Mc-DAB on rat liver cells. Cancer Res. 19: 997, 1959.

    PubMed  CAS  Google Scholar 

  34. Remmer H, Die Induktion Arzneimittel abbauender Enzyme im Endoplasmatisch Reticulum der Leberzelle durch Pharmaka. Dtsch. Med. Wschr. 92: 2001, 1967.

    Google Scholar 

  35. Essner E, Novikoff AB, Human hepatocellular pigments and lysosomes J. Ultrastruct. Res. 3: 374, 1960.

    Article  CAS  Google Scholar 

  36. Palay S, The morphology of secretion. In: Frontiers of cytology, Palay SL, (ed), New Haven, Yale University Press. 1958, p. 305.

    Google Scholar 

  37. Ellinger P, Hirt A, Mikroskopische Untersuchung an lebenden Organen; Methodik: Intravital Mikroskopie. Z. ges. Anat. (abt 1 ), 90: 791, 1929.

    Article  Google Scholar 

  38. White TT, Manometry and physiology of the bile ducts. In: Surgery of the liver, pancreas and biliary tract, Najarian J, Delaney J, (eds), New York, Stratton, 1975.

    Google Scholar 

  39. Daniel O, The value of radionanometry in bile duct surgery. Amer. Roy. Coll. Surg. Eng. 51: 357, 1972.

    CAS  Google Scholar 

  40. Hand BH, Anatomy and function of the exhepatic biliary system. Clin. in gasteroenterology 2: 3, 1973.

    CAS  Google Scholar 

  41. Hallenbeck GA, Biliary and pancreatic intraductal pressures. In: Handbook of Physiology, sect. 6, Vol. II, Code CF (ed), Washington DC, 1967, Amer. Phys. Soc. p. 1007.

    Google Scholar 

  42. Admirand W, Way LW, The gallbladder and pancreas. In: Gastro-intestinal disease, sect. 5, Sleisinger M, Fordtran J (eds), Philadelphia, Saunders, 1973, P. 352.

    Google Scholar 

  43. Ivy AC, Drewyek GE, Orndorff BH, The effect of cholecystokinin on human gallbladder.Amer. J. Physiol. 93: 661, 1930.

    Google Scholar 

  44. Ostrow JD, Absorption by the gallbladder of bile salts; sulfobromphtalein and iodipamide. J. Lab, clin. Med. 74: 482, 1969.

    CAS  Google Scholar 

  45. Wheeler HO, Concentration of the gallbladder. Amer. J. Med. 51: 588, 1971.

    Article  PubMed  CAS  Google Scholar 

  46. Koster HA, Shapiro A, Lerner H, On the rate of secretion of bile. Amer. J. Physiol. 115: 23, 1936.

    Google Scholar 

  47. Cameron R, Some problems of biliary cirrhosis. Brit. med. J. 1: 535, 1958.

    Article  PubMed  CAS  Google Scholar 

  48. Brauer RW, Leong GF, Holloway RJ, The effect of perfusion, pressure and temperature on bile flow and bile secretion pressure. Amer. J. Physiol. 177: 103, 1954.

    PubMed  CAS  Google Scholar 

  49. Javitt NB, The cholestatic syndrome. Amer. J. Med. 51: 637, 1971.

    Article  PubMed  CAS  Google Scholar 

  50. Sperber I, Biliary secretion of organic anions and its influence on bile flow. In: The biliary system. Taylor W (ed), Oxford, Blackwell, 1965.

    Google Scholar 

  51. Wheeler HO, Determinants of the flow and composition of bile. Gastroenterology 40: 584, 1961.

    PubMed  CAS  Google Scholar 

  52. Hofmann AF, Alan F, The enterohepatic circulation of bile acids in man. In: Clinics in gasteroenterology, Vol. 6, no. 1, Baumgarter G (ed), Philadelphia Saunders, 1977.

    Google Scholar 

  53. Berge Henegouwen GP, van, Galzuren en cholestase, Thesis Nijmegen, 1974.

    Google Scholar 

  54. Grafflin AL, Excretion of fluorescein by liver in the normal and abnormal conditions in vivo, observed with fluorescent microscope. Amer. J. Anat. 81: 63, 1947.

    Article  PubMed  CAS  Google Scholar 

  55. Mendeloff AJ, Fluorescence of intravenously administered Rose Bengal appears only in hepatic polygonal cells. Proc. Soc. exp. Biol. Med. 70: 556, 1949.

    PubMed  CAS  Google Scholar 

  56. Hanzon V, Liver cell secretion under normal and pathologic conditions studied by fluorescence microscopy on living rats. Acta physiol. Scand. 28 suppl. 101: 1, 1952.

    Google Scholar 

  57. Boyer JL, Bloomer JR, Canalicular bile secretion in man. Studies utilizing the biliary clearance of (t4C) mannitol. J. clin. Invest. 54: 773, 1974.

    Article  PubMed  CAS  Google Scholar 

  58. Cowen AE, Korman MG, Hofmann A, Thomas PJ, Plasma disappearance of radioactivity after i.v. injection of labeled bile acids in man. Gastroenterology 68: 1567, 1975.

    PubMed  CAS  Google Scholar 

  59. Schanker LS, Secretion of organis compounds in bile. In: Handbook of physio- logy, sect.6, Code CF, Heidel W (eds), Washington, Physiol. Soc. 1968, p. 2433.

    Google Scholar 

  60. Smith RL, The biliary excretion and enterohepatic circulation of drugs and other organic compounds. In: Progress in Drug Research, Jucker E (ed), Basle, Birkhäuser, 1966, p. 299.

    Google Scholar 

  61. Sperber I, Secretion of organic anions in the formation of urine and bile. Pharmac. Rev. 11: 109, 1959.

    CAS  Google Scholar 

  62. Cahili GF, jr, Ashmore J, Earle AS, Zottu S, Glucose penetration into the liver. Amer. J. Physiol. 192: 491, 1958.

    Google Scholar 

  63. Schanker LS, Hogben C, Biliary excretion of inulin sucrose and mannitol: analysis of bile formation. Amer. J. Physiol. 200: 1087, 1961.

    PubMed  CAS  Google Scholar 

  64. Solomon HM, Schanker LS, Hepatic transport of organic cations: active uptake of a quaternary ammonium compound procain amide ethobromide by rat liver slices. Biochem. Pharmacol. 12: 621, 1963.

    Article  PubMed  CAS  Google Scholar 

  65. Priestly BG, O’Reilly WJ, Protein binding and the excretion of some azo dyes in rat bile. J. Pharm. Pharmacol. 18: 41, 1966.

    CAS  Google Scholar 

  66. Levi AJ, Gatmaitan Z, Arias IM, Two hepatic cytoplasmic protein fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin, sulphobromophtalein and other anions. J. clin. Invest. 48: 2156, 1969.

    Article  PubMed  CAS  Google Scholar 

  67. Schanker LS, Hepatic transport of organic cations. In: The biliary system, Taylor W (ed), Oxford, Blackwell, 1965 p. 469.

    Google Scholar 

  68. Staedeler F, liber die Farbstoffe der Galle. Justin Lubigs. Amer. Chem. 132: 323, 1864.

    Google Scholar 

  69. Ehrlich P, Sulfodiazobenzol, ein Reagens auf Bilirubin. Zbl. Klin. Med. 45: 721, 1883.

    Google Scholar 

  70. Hijmans van den Bergh AA, Muller P, Über eine direkte und einde indirekte Diazoreaktion auf Bilirubin. Biochem. Z. 77: 90, 1916.

    Google Scholar 

  71. Cole PH, Lathe GH, The separation of serum pigments giving the direct and indirect Van den Berh reaction. J. clin. Path. 6: 99, 1953.

    Article  PubMed  CAS  Google Scholar 

  72. Ostrow JD, The protein-binding of C-14 bilirubin in human and murin serum. J. clin. Invest. 42: 1286, 1963.

    Article  PubMed  CAS  Google Scholar 

  73. Brandt KH, The bilirubin story. Folia med. neerl. 15: 167, 1972.

    PubMed  CAS  Google Scholar 

  74. Brown WR, Grodsky GM, Carbone J, Intracellular distribution of triated bilirubin during hepatic uptake and excretion. Amer. J. Physiol. 207: 1237, 1965.

    Google Scholar 

  75. Butt HR, Foulk T, Hoffmann HN, Bilirubin metabolism. In: Modern Trends in Gasteroenterology 3. Card WI (ed), London, Butterworths, 1961.

    Google Scholar 

  76. Fleischner G, Arias JM, Recent advances in bilirubin formation, transport, metabolism and excretion. Amer. J. Med. 49: 576, 1970.

    Article  PubMed  CAS  Google Scholar 

  77. Hoffmann HN, II, Whitcomb FF, jr, Butt HR, Bollman JL, Bile pigments of jaundice. J. clin. Invest. 39: 132, 1960.

    Article  Google Scholar 

  78. Wheeler HO, Inorganic ions in bile. In: The biliary tract, Taylor W (ed), Oxford, Blackwell, 1965.

    Google Scholar 

  79. Moulin D, de, Geel en groen zien in het verleden. In: Pathologie van lever en galwegen. Bernards JA, Tongeren JHM (eds), Nijmegen, Thoben Offset, 1971.

    Google Scholar 

  80. Popper H, The pathogenesis of cholestasis. In: Surgery of the liver, pancreas and biliary tract, Natarisian J, Delaney J (eds), Grune and Stratton New York, 1975, p. 391.

    Google Scholar 

  81. Sherlock S, In: Diseases of the liver and biliary system. Scientific Publication. London, Blackwell, 1975, p. 1.

    Google Scholar 

  82. Popper H, The pathogenesis of cholestasis. Surgery of the liver, pancreas and biliary tract, p. 391, 1975.

    Google Scholar 

  83. Popper H, Szanlo PB, Intrahepatic cholestasis (“cholangitis”). Gastroenterology 31: 683, 1956.

    PubMed  CAS  Google Scholar 

  84. Schaffner F, Popper H, Morphologic studies of cholestasis. Gastroenterology 37, p. 565, 1959.

    PubMed  CAS  Google Scholar 

  85. Desmet VJ, Morphologic and histiochemical aspects of cholestasis. In: Progress of liver diseases, Vol.IV, Popper H, Schaffner F, (eds), New York, Grune and Stratton, 1972, p. 97.

    Google Scholar 

  86. Schalm L, De pathogenese van de verschillende vormen van icterus. In: Pathologie van lever en galwegen, Bernards JA, Tongeren JHM, Nijmegen, Thoben Offset, 1971, p. 117.

    Google Scholar 

  87. Schaffner F, Popper H, Classification and mechanism of cholestasis. In: Liver and biliary disease, Wright R, Alberti K, Karran S, Millward-Sadler GH, (eds), Saunders, London, 1979, p. 296.

    Google Scholar 

  88. Schersten T, Metabolic difference between hepatitis and cholestasis in human liver. In: Progress in liver diseases, Vol. IV, Popper H, Schaffner F, (eds), New York, Grune and Stratton, 1972, p. 133.

    Google Scholar 

  89. Ozawa K, Takasan H, Kitamora O, Alteration in liver mitochondria) metabolism in a patient with biliary obstruction due to liver carcinoma. Amer. J. Surg. 126: 653, 1973.

    Article  PubMed  CAS  Google Scholar 

  90. Cameron R, Hou PG, Biliary cirrhosis. Oliver and Boyd (eds ), Edinburgh, 1962.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Tjen, H.S.L.M. (1981). The Liver and Biliary Tract. Anatomical and Physiological Considerations. In: Cox, P.H. (eds) Cholescintigraphy. Developments in Nuclear Medicine, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8325-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8325-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8327-4

  • Online ISBN: 978-94-009-8325-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics