Skip to main content

Storage Capability of Solar Ponds

  • Conference paper
Thermal Storage of Solar Energy

Abstract

The non-convecting solar pond is a large-area solar collector of 1-2m deep, having built-in storage. This storage is in part due to the mass of water in the pond and in part to the ground under the pond (where ground insulation is not used). Diurnal variations of insolation or of energy withdrawal rate have negligible effect on temperature over periods of a week or so. Long-term (seasonal) storage is obtained by having additional depth of a few metres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bronicki L., Lev-Er J., Porat Y., 1980. “Large Solar Electric Power Plant Based on Solar Ponds”, World Power Conf., Munich.

    Google Scholar 

  2. Elata C. & Levin O., 1962. “Selective Flow in a Pond with Density Gradient”, Hydraulic Report, Technion, Haifa, Israel.

    Google Scholar 

  3. Hipsher M.S. & Boehm R.F., 1976. “Heat Transfer Considerations of a Non-Convecting Solar Pond Exchanger”, Am. Soc. Mech. Engrs. 76-WA/Sol 4.

    Google Scholar 

  4. Nielsen C.E., 1975. “Salt Gradients for Solar Ponds for Solar Energy Utilisation”, ENVIRONMENTAL CONSERVATION, 2, pp. 289–292.

    Article  Google Scholar 

  5. Nielsen C.E., 1979. Chapter on “Non-convective Salt Gradient Solar Ponds” in SOLAR ENERGY HANDBOOK, Eds. Dickenson & Cheremishoff, Marcel Decker.

    Google Scholar 

  6. Rabl A. & Nielsen C.E., 1975. “Solar Ponds for Space Heating”, SOLAR ENERGY, 17, No.l, April 1975, pp. 1–12.

    Article  Google Scholar 

  7. Tabor H., 1961. “Large-area Solar Collectors (Solar Ponds) for Power Production”, UN Conf. New Sources of Energy, Rome — reprinted SOLAR ENERGY VII, No. 4, pp. 189–194 (Oct. 1963).

    Google Scholar 

  8. Tabor H., 1966. “Solar Ponds”, SCIENCE JOURNAL, pp. 66–71 (1968).

    Google Scholar 

  9. Tabor H., 1979. “Solar Ponds (Non-convecting)”, UNITAR Conf. on Long-Term Energy Sources, Montreal.

    Google Scholar 

  10. Tabor H., 1980. “Non-Convecting Solar Ponds”, Phil. Trans. R. Soc. Lond., A295, pp. 423–433. Reprinted in book “Solar Energy” published by Royal Society of London (1980).

    Article  Google Scholar 

  11. Tabor H. & Weinberger H.Z., 1980. Chapter on “Non-Convecting Solar Ponds”, SOLAR ENERGY HANDBOOK, Ed. Kreider, McGraw-Hill, N.Y.

    Google Scholar 

  12. Weinberger H., 1964. “The Physics of the Solar Pond”, SOLAR ENERGY VIII, No. 2, pp. 45–56 (April 1964).

    Article  Google Scholar 

  13. Carslaw H.S., Jaeger J.C., 1959. “Conduction of Heat in Solids” Second Edition, Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 TNO and Martinus Nijhoff Publishers, The Hague

About this paper

Cite this paper

Tabor, H. (1981). Storage Capability of Solar Ponds. In: den Ouden, C. (eds) Thermal Storage of Solar Energy. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8302-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8302-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8304-5

  • Online ISBN: 978-94-009-8302-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics