The Reinvestigation of Vinyl Acetate Emulsion Polymerization (I) -The Rate of Polymerization

  • K. H. S. Chang
  • M. H. Litt
  • M. Nomura


The kinetics of the seeded emulsion polymerization of vinyl acetate were investigated thoroughly. The variation of the polymerization rate with changes in particle concentration, type of emulsifier, emulsifier concentration, persulfate concentration, ionic strength, and monomer volume were determined. The rate of polymerization is dependent on the initiator concentration to the 0.6 power, the particle concentration to the 0.12 power, and the vinyl acetate volume to the 0.39 power; however, it is independent of the type of emulsifier, emulsifier concentration, and ionic strength in the emulsion. In all cases, the rate of the polymerization is almost independent of monomer concentration in the particles until 85 or 90% conversion.

The results were rationalized by the following mechanism.
  1. (a)

    The persulfate ion radical enters the particle where it either initiates or terminates the polymerization depending on whether the particle contains a radical or not. As only 1 to 2% of particles contain radicals, it usually initiates polymerization.

  2. (b)

    The radical in a particle can chain transfer to monomer generating a monomer radical. It is believed that the kinetically important chain transfer is on vinyl hydrogen. This radical reinitiates relatively slowly and thus the radical can escape from the particle to become an aqueous radical.

  3. (c)

    The aqueous monomer radical can do several things, (i) It can be swept up by a dead particle, (ii) it can react with initiator to generate a sulfate ion radical which will then enter a particle and initiate or terminate the polymerization, (in) it can be swept up into a particle containing a radical. Since the time the monomer radical stays in a particle is relatively short, the radical may diffuse out of such a particle without terminating, though it usually terminates under our conditions of polymerization.

  4. (d)

    The escape from particles and diffusion back in continues for the monomer radical until it either reinitiates or terminates.


The kinetic steps were justified by data from the literature and kinetic equations were derived and integrated. The equations were compared with the experimental data and shown to match very well over the whole range of experimental parameters. The integrated equation followed the course of polymerization exactly over the whole parameter range. The rate constant for reinitiation was calculated to be 29 liter/mole s and for termination to be 1.1×109 liter/mole s at 60°:C.


Particle Concentration Emulsion Polymerization Chain Transfer Monomer Concentration Sodium Lauryl Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



partition coefficient of monomer and monomer radicals between the particles and the aqueous phase


fractional conversion of polymer


particle diameter


diffusion constant of monomer radical in particles


diffusion constant of monomer radical in aqueous phase


diffusion constant of monomer radical in particles before disappearance of separate monomer phase


the efficiency of unimolecular persulfate decomposition


initiator concentration


initiator concentration at beginning of reaction


unimolecular decomposition constant of potassium persulfate


propagation rate constant of vinyl acetate


chain transfer constant of growing radical to monomer


reinitiation rate constant, chain transferred monomer radical adding to monomer


induced decomposition rate constant, attack by monomer radical on potassium persulfate in the aqueous phase


termination rate constant for monomer radical in a particle at or before 30% conversion


\( = 2 \cdot 75x{{10}^{{ - 9}}}{{k}_{7}}{{\left( {f{{k}_{1}}{{k}_{3}}/{{k}_{4}}} \right)}^{{1/2}}} \)


rate of polymerization at 30% conversion


monomer concentration in particles


monomer concentration per liter H2O during polymerization


concentration of particles containing initially chain transferred monomer radical


monomer radical concentration in aqueous phase


initial monomer concentration/liter H2O

(\( \left( {{{M}_{{{{a}_{0}}}}}} \right) \))

monomer concentration in aqueous phase before the disappearance of separate monomer phase


monomer concentration in aqueous phase


concentration of particles into which a monomer radical has diffused


concentration of particles containing one growing radical and one monomer radical


Avogadro’s number, 6.02 × 1023

\( {\bar{n}} \)

fraction of particles with growing radicals


concentration of particles/liter H2O


= (\( \left( {P\bar{n}} \right) \)) = concentration of particles with growing radicals/liter H2O


probability of escape of monomer radical from particle (= 1/(1 + k 4 Mad 2/4D))


probability of termination of monomer radical with growing radical in a particle (= 1/(1 + 2NπdD 0/3ak 80))


rate of polymerization


volume of organic phase contained in the particles


volume of aqueous phase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    (a) N. Friis and L. J. Nyhagen, J. Appl. Polym. Sci., 17, 2311 (1973).CrossRefGoogle Scholar
  2. (b).
    N. Friis, Thesis, Technical University, Copenhagen, Denmark, 1973.Google Scholar
  3. 2.
    (a) M. Nomura, M. Harada, K. Nakagawara, W. Eguchi and S. Nagata, J. Chem. Eng. Jpn., 4, 160 (1971).CrossRefGoogle Scholar
  4. (b).
    M. Nomura, M. Harada, W. Eguchi and S. Nagata, ACS Symposium Series, No. 24, 1976, p. 102.CrossRefGoogle Scholar
  5. 3.
    R. Patsiga, Thesis, New York State University, College of Forestry, Syracuse, New York, 1962.Google Scholar
  6. 4.
    M. H. Litt, R. Patsiga and. V. T. Stannett, J. Polym. Sci., Al, 8, 3607 (1970).CrossRefGoogle Scholar
  7. 5.
    D. Gershberg, Paper Presented at Joint Meeting of AIChE and IChE (England), London, June 14, 1965.Google Scholar
  8. 6.
    J. W. Breitenbach, H. Edelhauser and R. Hochrainer, Monatshefre fur Chemie, 99, 625 (1968).CrossRefGoogle Scholar
  9. 7.
    A. S. Dunn and P. A. Taylor, Makromol. Chem., 83, 207 (1965).CrossRefGoogle Scholar
  10. 8.
    A. S. Dunn and L. C.-H. Chong, Br. Polym. J., 2, 49 (1970).CrossRefGoogle Scholar
  11. 9.
    W. V. Smith and R. W. Ewart, J. Chem. Phys., 16, 592 (1948).CrossRefGoogle Scholar
  12. 10.
    V. T. Stannett, A. Klein and M. H. Litt, Br. Polym. J., 7, 139 (1975).CrossRefGoogle Scholar
  13. 11.
    P. Harriot, J. Polym. Sci, A-l, 9, 1153 (1971).Google Scholar
  14. 12.
    D. M. French, J. Polym. Sci., 32, 395 (1958).CrossRefGoogle Scholar
  15. 13.
    M. Lazar, J. Paulinec and Z. Manasek, Collection Czech. Chem. Commun., 26, 1380 (1961).Google Scholar
  16. 14.
    S. Imoto, J. Ukida and T. Kominami, Kobunshi. Kagaku, 14, 101 (1957).CrossRefGoogle Scholar
  17. 15.
    O. L. Wheeler, E. Lavin and R. N. Crozier, J. Polym. Sci., 9, 157 (1952).CrossRefGoogle Scholar
  18. 16.
    R. O. Howard, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Mass., 1952.Google Scholar
  19. 17.
    P. K. Isaacs and H. A. Edelhauser, J. Appl. Polym. Sci., 10, 171 (1966).CrossRefGoogle Scholar
  20. 18.
    K. H. S. Chang, M. H. Litt and A. M. Jamieson, The measurement of latex particle size by quasielastic laser light scattering, J. Polym. Sci., A-2, submitted for publication.Google Scholar
  21. 19.
    M. L. Corrin, J. Polym. Sci, 2, 257 (1947).CrossRefGoogle Scholar
  22. 20.
    G. M. Burnett and W. W. Wright, Proc. Roy. Soc. (London), A211, 41 (1954).Google Scholar
  23. 21.
    M. H. Litt and K. H. S. Chang, this volume, Chapt. 8.Google Scholar
  24. 22.
    M. Ryska, M. Kolinsky and D. Lim, J. Polym. Sci., C, 33, 357 (1971).Google Scholar
  25. 23.
    J. W. Breitenbach and A. Schindler, Monatsh., 86, 437 (1955).CrossRefGoogle Scholar
  26. 24.
    J. W. Breitenbach, O. F. Olaj, H. Reif and A. Schindler, Makromol. Chem., 122, 51 (1969).CrossRefGoogle Scholar
  27. 25.
    K. Higashiura and M. Oiwa, J. Polym. Sci., A-1, 6, 1857 (1968).CrossRefGoogle Scholar
  28. 26.
    K. Goffloo and R. Kosfeld, Makromol. Chem., 37, 105 (1974).CrossRefGoogle Scholar
  29. 27.
    R. Kosfeld and K. Goffloo, Kolloid Z.U. Polymere, 247, 801 (1971).CrossRefGoogle Scholar
  30. 28.
    H. Fujita, Adv. Polym. Sci., 3, 1 (1961).CrossRefGoogle Scholar
  31. 29.
    D. H. Napper and A. G. Parts, J. Polym. Sci., 61, 113(1962).CrossRefGoogle Scholar
  32. 30.
    E. Vanzo, R. H. Marchessault and V. T. Stannett, J. Colloid Sci., 20, 62 (1965).CrossRefGoogle Scholar
  33. 31.
    I. M. Kolthoff and J. K. Miller, J. Amer Chem. Soc., 73, 3055 (1951).CrossRefGoogle Scholar
  34. 32.
    J. Brandrup and E. H. Immergut (eds.), Polymer Handbook, Interscience, New York, 1975, (a) p. 11–50, (b) p. 11-62.Google Scholar
  35. 33.
    G. V. Schulz and D. J. Slein, Makromol. Chem., 52, 1 (1962).CrossRefGoogle Scholar
  36. 34.
    M. H. Litt and K. H. S. Chang, this volume, Chapt. 7.Google Scholar
  37. 35.
    C. R. Wilke and P. Chang, AIChE Journal, 1, 264 (1955).CrossRefGoogle Scholar

Copyright information

© Applied Science Publishers Ltd 1981

Authors and Affiliations

  • K. H. S. Chang
    • 1
  • M. H. Litt
    • 1
  • M. Nomura
    • 1
  1. 1.Department of Macromolecular ScienceCase Western Reserve UniversityOhioUSA

Personalised recommendations