Skip to main content

Part of the book series: Monographs of the Physiological Society of Philadelphia ((MPSP,volume 7))

Abstract

Taurine is present in high concentrations in mammalian brain and in especially high concentrations in developing brain, in which it is the free amino acid present in the greatest concentration (Sturman et al., 1978). Little is known about the functions of taurine, other than its role in bile acid conjugation, an observation made over a century ago (Strecker, 1849) and repeatedly confirmed (Danielsson, 1963). Taurine has been proposed as an inhibitory neurotransmitter in brain and retina (Mandel and Pasantes-Morales, 1978; Oja and Kontro, 1978; Mandel et al., 1976), although it is present in far greater amounts than would be required for such a neurophysiological function. An alternative function of taurine may be that of membrane stabilization. It has been shown that taurine increases the permeability of lobster giant axon membranes to potassium and chloride but not to sodium (Gruener and Bryant, 1975). Although such ion fluxes are consistent with the actions of an inhibitory neurotransmitter, the observations were made on a region of lobster axon void of synaptic receptors. Taurine has been implicated in some forms of epilepsy, both in animal models and in man (Barbeau et al., 1975; Van Gelder, 1976, 1978). Frequently the concentration of taurine at the epileptic focus is lower than that in the surrounding tissue, and this change is often accompanied by disturbances in glutamic acid metabolism. Taurine therapy of epilepsy has been tested clinically with some success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbeau, A.; Inoue, N.; Tsukada, Y.; and Butterworth, R. The neuropharmacology of taurine. Life Sci., 17, 669–678 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Champlain, J.; Malmfors, T.; Olson, L.; and Sachs, C. Ontogenesis of peripheral adrenergic neurons in the rat: Pre- and postnatal observations. Acta Physiol Scand., 80, 276–288 (1970).

    Article  PubMed  Google Scholar 

  • Cheah, T. B.; and Geffen, L. B. Effects of axonal injury on norepinephrine, tyrosine hydroxylase, and monoamine oxidase levels in sympathetic ganglia. J. Neurobiol., 4, 433–452 (1973).

    Article  Google Scholar 

  • Coyle, J. T., and Axelrod, J. Development of the uptake and storage of L-3H norepinephrine in the rat brain. J. Neurochem., 18, 2061–2078 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Danielsson, H. Present states of research on catabolism and excretion of cholesterol. Advan. Lipid Res., 1, 335–385 (1963).

    CAS  Google Scholar 

  • Di Giamberadino, L. Independence of the rapid axonal transport of protein from the flow of free amino acids. Acta Neuropath., Suppl. V, 132–135 (1971).

    Google Scholar 

  • Elam, J. S.; and Agranoff, B. W. Rapid transport of proteins in the optic system of the goldfish. J. Neurochem., 18, 375–387 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Elam, J. S.; Neale, E. A.; and Agranoff, B. W. Rapid axonal transport of sulfated mucopoly-saccharide proteins. Science, 170, 458 460 (1970).

    Google Scholar 

  • Elam, J. S.; Neale, E. A.; and Agranoff, B. W. Axonal transport in the goldfish visual system. Acta Neuropath., Suppl. V, 257–266 (1971).

    Google Scholar 

  • Gruener, R.; and Bryant, H. J. Excitability modulation by taurine: Action on axon membrane permeabilities. J. Pharmacol. Exp. Ther., 194, 514–521 (1975).

    PubMed  CAS  Google Scholar 

  • Hayes, K. C.; Carey, R. E.; and Schmidt, S. Y. Retinal degeneration associated with taurine deficiency in the cat. Science, 188, 949 951 (1975).

    Google Scholar 

  • Ingoglia, N. A.; Sturman, J. A.; Lindquist, T. D.; and Gaull, G. E. Axonal migration of taurine in the goldfish visual system. Brain Res., 115, 535–539 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Ingoglia, N. A.; Sturman, J. A.; and Eisner, R. A. Axonal transport of putrescine, spermidine and spermine in normal and regenerating goldfish optic nerves. Brain Res., 130, 433–445 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Ingoglia, N. A.; Sturman, J. A.; Rassin, D. K.; and Lindquist, T. D. A comparison of the axonal transport of taurine and proteins in the goldfish visual system. J. Neurochem., 31, 161–170 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, J. O. Is there an axonal transport of amino acids? J. Neurochem., 29, 615–617 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, J. O.; and Linde, A. Axonal transport of [35S]sulfate in retinal ganglion cells of the rabbit. J. Neurochem., 28, 293–297 (1977).

    Article  CAS  Google Scholar 

  • Karlstrom, L.; and Dahlstrom, A. The effect of different types of axonal trauma on the synthesis and storage of amine storage granules in the rat sciatic nerve. J. Neurobiol., 4, 191–200 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Mandel, P.; and Pasantes-Morales, H. Taurine in the nervous system. Rev. Neuroscience, 3, 157–193 (1978).

    CAS  Google Scholar 

  • Mandel, P.; Pasantes-Morales, H.; and Urban, P. F. Taurine, a putative neurotransmitter in retina. In Transmitters in the Visual Process, S. L. Bonting, ed. Pergamon Press, New York (1976), pp. 89–105.

    Google Scholar 

  • Naka, K. Electrophysiology of fetal spinal cord: 1. Action potentials of motor neurons. J. Gen. Physiol., 47, 1003–1022 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Neale, J. H.; Elam, J. S.; Neale, E. A.; and Agranoff, B. W. Axonal transport and turnover of proline- and leucine-labeled protein in the goldfish visual system. J. Neurochem., 23, 1045–1055 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Oja, S. S.; and Kontro, P. Neurotransmitter actions of taurine in the central nervous system. In Taurine and Neurological Disorders, A. Barbeau and R. J. Huxtable, eds. Raven Press, New York (1978), pp. 181–200.

    Google Scholar 

  • Olson, L.; and Malmfors, T. Growth characteristics of adrenegic nerves in the adult rat. Acta Physiol. Scand., Suppl. 348, 1–112 (1970).

    CAS  Google Scholar 

  • Politis, M. J.; and Ingoglia, N. A. Axonal transport of taurine along neonatal and young adult rat optic axons. Brain Res., 166, 221–231 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Sachs, C.; Champlain, J.; Malmfors, T.; and Olson, T. Postnatal development of noradrenalin uptake in adrenegic neurons: In vitro isotope studies of different rat tissues with or without pretreatment with drugs. Europ. J. Pharmacol., 9, 67–79 (1970).

    Article  CAS  Google Scholar 

  • Schmidt, S. Y.; Berson, E. L.; and Hayes, K. C. Retinal degeneration in cats fed casein: 1. Taurine deficiency. Invest. Ophthalmol., 15, 47–52 (1976).

    PubMed  CAS  Google Scholar 

  • Strecker, A. Beobachtungen über die Galle verschiedener Thiere. Ann. Chim., 70, 149–197 (1849).

    Google Scholar 

  • Sturman, J. A. Taurine pool sizes in the rat: Effects of vitamin B-6 deficiency and high taurine diet. J. Nutr., 102, 1566–1580 (1973).

    Google Scholar 

  • Sturman, J. A. Taurine in the developing rabbit visual system: Changes in concentration and axonal transport including a comparison with axonally transported proteins. J. Neurobiol, 10, 221–237 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Sturman, J. A.; and Gaull, G. E. Taurine in the brain and liver of the developing human and monkey. J. Neurochem., 25, 831–835 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Sturman, J. A.; Rassin, D. K.; and Gaull, G. E. Taurine in the development of the central nervous system. In Taurine and Neurological Disorders, A. Barbeau and R. J. Huxtable, eds. Raven Press, New York (1978), pp. 49–71.

    Google Scholar 

  • Van Gelder, N. M. Rectification of abnormal glutamic acid levels by taurine. In Taurine, R. Huxtable and A. Barbeau, eds. Raven Press, New York (1976), pp. 293–302.

    Google Scholar 

  • Van Gelder, N. M. Glutamic acid and epilepsy: The action of taurine. In Taurine and Neurological Disorders, A. Barbeau and R. J. Huxtable, eds. Raven Press, New York (1978), pp. 287–402.

    Google Scholar 

  • Weiss, P.; and Hiscoe, H. B. Experiments on the mechanisms of nerve growth. J. Exp. Zool., 107, 315–395 (1948).

    Article  PubMed  CAS  Google Scholar 

  • Wen, G. Y.; Sturman, J. A.; Wisniewski, H. M.; Lidsky, A. A.; Cornwell, A. C.; and Hayes, K. C. Tapetum disorganization in taurine-depleted cats. Invest. Ophthalmol. Vis. Sci., 18, 1201–1206 (1979).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Spectrum Publications, Inc.

About this chapter

Cite this chapter

Sturman, J.A. (1981). Axonal Transport of Taurine. In: Schaffer, S.W., Baskin, S.I., Kocsis, J.J. (eds) The Effects of Taurine on Excitable Tissues. Monographs of the Physiological Society of Philadelphia, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8093-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8093-8_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8095-2

  • Online ISBN: 978-94-009-8093-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics