Function and Regulation of Taurine in the Pineal Gland

  • G. H. T. Wheler
  • D. C. Klein
Part of the Monographs of the Physiological Society of Philadelphia book series (MPSP, volume 7)


Taurine is highly concentrated in the pineal gland, where it occurs at 20–60 mM (Crabai et al., 1974; Green et al., 1962; Guidotti et al., 1972; La Bella et al., 1968; Vellan et al., 1970). This is higher than the concentration of taurine in any other body tissue, except the neurohypohysis. It is also relatively abundant compared to other amino acids in the pineal gland, comprising 30% of the free amino acids of the adult gland (Nir et al., 1974). In view of these observations, it is surprising that little is known about the role of taurine in this tissue.


Free Amino Acid Pineal Gland Melatonin Production Taurine Release Pineal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, H. C.; Davison, A. N.; and Kaczmarek, L. K. Subcellular distribution of taurine and cysteinsulphinate decarboxylase in developing rat brain. Biochem. J., 122, 759–763 (1971).PubMedGoogle Scholar
  2. Axelrod, J.; Wurtman, R.; and Kelly, D. E. In The Pineal Gland, Wurtman, R. J.; Axelrod, J.; and Kelly, D. E., eds. Academic Press, New York (1968), p. 8.Google Scholar
  3. Axelrod, J.; and Zatz, M. The β-adrenergic receptor and the regulation of circadian rhythms in the pineal gland. In Biochemical Actions of Hormones, Littwack, G., ed. Academic Press, New York (1977), pp. 249–268.Google Scholar
  4. Baskin, S. I.; and Dagirmajian, R. The effect of taurine on the pigmentation of the bullfrog tadpole. Comp. Biochem. Physiol., 44A, 297–302 (1973).CrossRefGoogle Scholar
  5. Bradford, H. F.; Davison, A. N.; and Wheler, G. H. T. Taurine and synaptic transmission. In Taurine, Huxtable, R.; and Barbeau, A., eds. Raven Press, New York (1976), pp. 303–310.Google Scholar
  6. Crabai, H.; Sitzer, A.; and Pepeu, G. Taurine concentrations in the neurohypophysis of different species. J. Neurochem., 1091–1092 (1974).Google Scholar
  7. Davison, A. N.; and Kaczmarek, L. K. Taurine—A possible neurotransmitter. Nature,234, 107–108 (1971).PubMedCrossRefGoogle Scholar
  8. De Belleroche, J. S.; and Bradford, H. F. Amino acids in synaptic vesicles from mammalian cerebral cortex: A reappraisal. J. Neurochem., 21, 441–451 (1973).CrossRefGoogle Scholar
  9. Green, J. P.; Day, M.; and Robinson, J. D. Some acidic substances in neoplastic mast cells and in the pineal body. Eiochem. Pharmac., 11, 957–960 (1962).CrossRefGoogle Scholar
  10. Greengard, P. Possible role for cyclic nucleotides and phosphorylated membrane proteins in postsynaptic actions of neurotransmitters. Nature, 260, 101–108 (1976).PubMedCrossRefGoogle Scholar
  11. Grosso, D. A.; Bressler, R.; and Benson, B. Circadian rhythm and uptake of taurine by the rat pineal gland. Life Sci., 22, 1789–1798 (1978).PubMedCrossRefGoogle Scholar
  12. Guidoti, A.; Badiani, G.; and Pepeu, G. Taurine distribution in the cat brain. J. Neurochem., 19, 431–435 (1972).CrossRefGoogle Scholar
  13. Klein, D. C. Circadian rhythms in indole metabolism in the rat pineal gland. In The Neurosciences, Third Study Program, Schmidt, F. O., ed MIT Press, Cambridge, Mass. (1974), pp. 509–511.Google Scholar
  14. Klein, D. C. The pineal gland: A model of neuroendocrine regulation. In The Hypothalamus, Reichlin, S.; Baldessarini, R. J.; and Martin, J. B., eds Raven Press, New York (1978), pp. 303–327.Google Scholar
  15. Klein, D. C.; and Berg, G. R. Pineal gland: Stimulation of melatonin production by norepinephrine involves cyclic AMP-mediated stimulation of N-acetyltransferase. In Role of Cyclic AMP in Cell Function, Greengard, P.; and Costa, E., eds. Advances in Biochemical Psycho-pharmacology, Vol. 3. Raven Press, New York (1970), pp. 241–263.Google Scholar
  16. Kocsis J. J.; Wheler G. H. T.; and Klein, D. C. Unpublished observations (1979).Google Scholar
  17. Krusz, J. C.; Dix, R. K., and Baskin, S. I. Factors that affect the uptake and endogenous content of taurine in the pineal gland. Fed. Proc.,37, 907 (1977).Google Scholar
  18. La Bella, F.; Vivian, S.; and Queen, G. Abundance of cystathionine in the pineal body: Free amino acids and related compounds of bovine pineal, anterior and posterior pituitary and brain. Biochem. Biophys. Acta., 158, 286–288 (1968).CrossRefGoogle Scholar
  19. Leonard, B. E.; Neuhoff, V.; and Tongue, S. R. The effect of chronic administration of D-amphetamine upon circadian changes in amino acids in the pineal gland and pituitary glands of the rat. J. Neurosci. Res., 1, 83–92 (1977).CrossRefGoogle Scholar
  20. Mandel, P.; and Pasantes-Morales, H. Taurine in the nervous system. In Reviews of Neuroscience, Ehrepreis, S.; and Kopin, I., eds Raven Press, New York (1978), pp. 157–193.Google Scholar
  21. Muramatsu, M.; Kakita, K.; Nakagawa, K.; and Kuriyama, K. A modulating role of taurine on release of acetylcholine and norepinephrine from neural tissues. Japan J. Pharmacol., 28, 259–268 (1978).CrossRefGoogle Scholar
  22. Nir, I.; Briel, G.; Dames, W.; and Neuhoff, V. Pineal proteins and free amino acids during ontogenesis in rats. Neuroendocrinol., 14, 34 (1974).CrossRefGoogle Scholar
  23. Parfitt, A.; Weiler, J. L.; Klein, D. C.; Sakai, K. K.; and Marks, B. H. Blockade by ouabain or elevated potassium concentration of the adrenergic and cAMP-induced stimulation of pineal serotonin N-acetyltransferase activity. Molec. Pharmacol., 11, 241–255 (1975).Google Scholar
  24. Phillis, J. W. An involvement of calcium and Na, K-ATPase in the inhibitory actions of various compounds on central neurons. In Taurine,Huxtable, R.; and Barbeau, A., eds. Raven Press, New York (1976), pp. 209–223.Google Scholar
  25. Sakai, K. K.; and Marks, B. H. Adrenergic effects on pineal cell membrane potential. Life Sci., 11, 285–291 (1972).CrossRefGoogle Scholar
  26. Vellan, E. J.; Gjessing, L. R.; and Stalsberg, Free amino acids in the pineal and pituitary glands of human brain. J. Neurochem., 17, 699–701 (1970).PubMedCrossRefGoogle Scholar
  27. Wheler, G. H. T.; and Klein, D. C. Taurine release from the pineal gland is stimulated via a ß-adrenergic mechanism. Brain Res., 187, 155–164 (1980).PubMedCrossRefGoogle Scholar
  28. Wheler, G. H. T.; and Klein, D. C. Cyclic AMP-induced release of [14C]taurine from pinealocytes. Biochim. Biophys. Res. Comm., 90, 22–27 (1979b).CrossRefGoogle Scholar
  29. Wheler, G. H. T.; Weller, J. L.; and Klein, D. C. Taurine: Stimulation of N-acetyltransferase activity and melatonin production via a beta-adrenergic mechanism. Brain Res., 166, 65–74 (1979a).PubMedCrossRefGoogle Scholar
  30. Wheler, G. H. T.; Bradford, H. F.; Davison, A. N.; and Thompson, E. J. Uptake and release of taurine from cerebral cortex slices and their subcellular compartments. J. Neurochem., 33, 331–337 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Spectrum Publications, Inc. 1981

Authors and Affiliations

  • G. H. T. Wheler
  • D. C. Klein

There are no affiliations available

Personalised recommendations