Advertisement

‘Which priming fluids?’

  • M. A. Tobias
  • J. M. Fryer

Abstract

It is 16 years since the South Central Association of Blood Banks met in Oklahoma City under the chairmanship of Dr Zuhdi and discussed which priming fluids were most suitable for cardiopulmonary bypass1. The title was ‘Blood, mannitol, dextran, sugar, water and confusion’, and in spite of the many papers published on the subject since then, agreement as to what constitutes the ideal prime has still not been reached. It is the purpose of this chapter to outline the changes which have taken place over the years and review some aspects of physiology relevant to the subject.

Keywords

Shear Rate Cardiopulmonary Bypass Systemic Vascular Resistance Hydroxyethyl Starch Plasma Expander 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zuhdi, N., Carey, J. and Greer, A. (1964). Blood, mannitol, dextran, sugar, water and confusion. Presented at the 6th Annual meeting of the South Central Association of Blood Banks, March 27, Oklahoma City, USAGoogle Scholar
  2. 2.
    Zuhdi, N., McCollough, B., Carey, J. and Greer, A. (1960). The use of citrated banked blood for open heart surgery. Anesthesiology, 21, 496PubMedCrossRefGoogle Scholar
  3. 3.
    Trede, M. (1969). Experimental investigations into the behaviour of coagulation and renal function during high dilution perfusions with glucose, Haemaccel and Rheomacrodex. In P. Lundsgaard-Hansen, A. Hässig and H. Nitschmann (eds.) Modified Gelatins as Plasma Substitutes: Bibliotheca Haematologica, 33, p. 553. (Basel: Karger)Google Scholar
  4. 4.
    Dow, J. W., Dickson III, J. F., Hamer, N. A. and Gadboys, H. L. (1960). Anaphy-lactoid shock due to homologous blood exchange in the dog. J. Thor. Surg., 39, 449Google Scholar
  5. 5.
    Gadboys, H. L., Slonim, R. and Litwak, R. S. (1962). Homologous blood syndrome: 1. Preliminary observations on its relationship to cardio-pulmonary bypass. Ann. Surg., 156, 793PubMedCrossRefGoogle Scholar
  6. 6.
    Doenicke, A., Grote, B. and Lorenz, W. (1977). Blood and blood substitutes. Br. J. Anaesth., 49, 681PubMedCrossRefGoogle Scholar
  7. 7.
    Götz, E., Thoma, H. and Schäfer, A. (1975). Hepatitis in Abhangigkeit von der transfundierten Konservenzahl. Anesthesiol. Wiederb., 90, 346Google Scholar
  8. 8.
    McNamara, J. J., Burran, E. L., Larson, E., Omiya, G., Suchiro, G. and Yamase, H. (1972). Effects of debris in stored blood on pulmonary microvasculature. Ann. Thor. Surg., 14, 133CrossRefGoogle Scholar
  9. 9.
    Melrose, D. G., Nahas, R., Alvarez, D., Todd, I. A. D. and Dempster, W. J. (1965). Post-operative hypoxia after extracorporeal circulation — a possible graft against host reaction. Experienta, 21, 47CrossRefGoogle Scholar
  10. 10.
    Benesch, R. and Benesch, R. E. (1967). The effect of organic phosphates from the human erythrocyte on the allosteric properties of haemoglobin. Biochem. Biophys. Res. Commun., 26, 162PubMedCrossRefGoogle Scholar
  11. 11.
    Bentler, E. and Wood, L. (1969). The in-vivo regeneration of red cell 2,3-diphos-phoglyceric acid (DPG) after transfusion of stored blood. J. Lab. Clin. Med., 74, 300Google Scholar
  12. 12.
    Panico, F. and Neptune, W. (1959). Mechanism to eliminate donor blood prime from pump oxygenator. Surg. Forum., 10, 65Google Scholar
  13. 13.
    Long, D. M., Sanchez, L., Varco, R. L. and Lillehei, C. W. (1961). The use of low molecular weight dextran and serum albumin as plasma expanders in extra-corporeal circulation. Surgery, 50, 12PubMedGoogle Scholar
  14. 14.
    Gelin, L. E. (1956). Studies in anaemia of injury. Acta Chir. Scand., Suppl 210Google Scholar
  15. 15.
    Zuhdi, M., McCollough, B., Carey, J., Krieger, C. and Greer, A. (1961). Hypo-thermic perfusion for open-heart surgical procedures: report on the use of a heart-lung machine primed with 5 % dextrose in water inducing haemodilution. J. Int. Coll. Surg., 35, 319.PubMedGoogle Scholar
  16. 16.
    Laver, M. B. and Buckley, M. J. (1972). Extreme hemodilution in the surgical patient. In K. Messmer and H. Schmid-Schönbein (eds.) Hemodilution. Theoretical Basis and Clinical Application, p. 215. (Basel: Karger)Google Scholar
  17. 17.
    Lilleasen, P., Frøysaker, T. and Stokke, O. (1978). Cardiac surgery in extreme haemodilution without donor blood, blood products or artificial macromolecules. Scand. J. Thor. Cardiovasc. Surg., 12, 249Google Scholar
  18. 18.
    Lee, W. H., Rubin, J. W. and Huggins, M. P. (1975). Clinical evaluation of priming solutions for pump oxygenator perfusion. Ann. Thor. Surg., 19, 529CrossRefGoogle Scholar
  19. 19.
    Zubiate, P., Kay, J. H., Mendez, A. M., Krohn, B. G., Hockman, R. and Dunne, E. F. (1974). Coronary artery surgery. A new technique with use of little blood, if any. J. Thor. Cardiovasc. Surg., 68, 263Google Scholar
  20. 20.
    Hardesty, R. L., Bayer, W. L. and Bahnson, H. T. (1968). A technique for the use of autologous fresh blood during open-heart surgery. J. Thor. Cardiovasc., 56, 683Google Scholar
  21. 21.
    Verska, J. J., Ludington, L. G. and Brewer, L. A. (1974). A comparative study of cardiopulmonary bypass with non-blood and blood prime. Ann. Thor. Surg., 18, 72CrossRefGoogle Scholar
  22. 22.
    Hallowell, P., Bland, J. H. L., Buckley, M. J. and Lowenstein, E. (1972). Transfusion of fresh autologous blood in open heart surgery. J. Thor. Cardiovasc., 64, 941Google Scholar
  23. 23.
    Lilleaasen, P. (1977). Moderate and extreme haemodilution in open-heart surgery. Scand. J. Thor. Cardiovasc. Surg., 11, 97Google Scholar
  24. 24.
    Gordon, R. J. and Ravin, M. (1978). Rheology and anesthesiology Anesth. Analg., 52, 252Google Scholar
  25. 25.
    Smith, E. E. and Crowell, J. W. (1967). Role of an increased haematocrit in altitude acclimatization. Aerosp. Med., 38, 39Google Scholar
  26. 26.
    Gordon, R. J., Ravin, M., Rawitscher, R. E. and Daicoff, G. R. (1975). Changes in arterial pressure, viscosity and resistance during cardiopulmonary bypass. J. Thor. Cardiovasc Surg., 69, 552Google Scholar
  27. 27.
    Boulanger, M. (1977). Levels of circulating norepinephrine and epinephrine before, during and after cardiopulmonary bypass in man. Survey Anesthesiol., 21, 48Google Scholar
  28. 28.
    Dunn, J., Kirsch, M. M., Harness, J., Carroll, M., Straker, J. and Sloan, H. (1974). Hemodynamic, metabolic, and hématologic effects of pulsatile cardiopulmonary bypass. J. Thor. Cardiovasc. Surg., 68, 138Google Scholar
  29. 29.
    Balasaraswathi, K., Glisson, S. N., El-Etr, A. A. and Azad, C. (1980). Effect of priming volume on serum catecholamines during cardiopulmonary bypass. Canad. Anaesth. Soc. J., 27, 135PubMedCrossRefGoogle Scholar
  30. 30.
    Guyton, A. C. and Richardson, T. Q. (1961). Effect of hematocrit on venous return. Circulai. Res., 9, 157Google Scholar
  31. 31.
    Murray, J. F., Escobar, E. and Rapaport, E. (1969). Effects of blood viscosity on haemodynamic responses in acute normovolaemic anemia. Am. J. Physiol., 216, 638PubMedGoogle Scholar
  32. 32.
    Thorén, L. (1977). Shock-principles of fluid therapy. In D. H. Lewis (ed.) Dextran — 30 years. Acta Univ. Ups. Symp. Univ. Ups. 3, 83 (Stockholm: Almqvist and Wiksell)Google Scholar
  33. 33.
    Messmer, K. (1977). Acute pre-operative hemodilution: an alternative to transfusion of donor blood. In D. H. Lewis (ed.) Dextran — 30 years. Acta Univ. Ups. Symp. Univ. Ups., 3, 93 (Stockholm: Almqvist and Wiksell)Google Scholar
  34. 34.
    Gott, V. L., Bartlett, M., Long, D. M., Lillehei, C. W. and Johnson, J. A. (1962). Myocardial energy substances in the dog heart during potassium and hypothermic arrest. J. Appl. Physiol., 17, 815Google Scholar
  35. 35.
    Lowenstein, E. (1976). Anaesthesia for cardiac surgery, p. 36. Massachusetts General Hospital. Harvard Medical School, (unpublished)Google Scholar
  36. 36.
    Clowes, G. H. A., Jr. (1972). The physiological basis of cardiac surgery. In J. C. Norman (ed.) Cardiac Surgery. 2nd Edn., p. 13. (New York: Appleton-Century-Crofts).Google Scholar
  37. 37.
    Kessler, M. and Messmer, K. (1975). Tissue oxygenation during hemodilution. In K. Messmer and H. Schmid-Schönbein (eds.) Intentional Hemodilution. Biblio-theca Haematologica 41, 16 (Basel: Karger)Google Scholar
  38. 38.
    Leaf, A. (1973). Cell swelling: a factor in ischemic tissue injury. Circulation, 48, 455PubMedGoogle Scholar
  39. 39.
    Kloner, R. A., Ganote, C. E. and Jennings, R. B. (1974). The ‘no-reflow’ phenomenon after temporary coronary occlusion in the dog. J. Clin. Invest., 44, 1496CrossRefGoogle Scholar
  40. 40.
    Buckberg, G. D. and Brazier, J. (1975). Coronary blood flow and cardiac function during haemodilution. In K. Messmer and H. Schmid-Schönbein (eds.) Intentional Hemodilution. Bibliotheca Haematologica, 41, 173 (Basel: Karger)Google Scholar
  41. 41.
    Kleinman, L. H., Yarbrough, J. W., Symmonds, J. B. and Wechsler, A. S. (1978). Pressure-flow characteristics of the coronary collateral circulation during cardio-pulmonary bypass. Effects of hemodilution. J. Thor. Cardiovasc. Surg., 75, 17Google Scholar
  42. 42.
    Stockard, J. J., Bickford, R. G. and Schäuble, J. F. (1973). Pressure-dependent cerebral ischemia during cardiopulmonary bypass. Neurology, 23, 521PubMedGoogle Scholar
  43. 43.
    Symmonds, J. B., Kleinman, L. H. and Wechsler, A. S. (1977). Effects of methoxa-mine on the coronary circulation during cardiopulmonary bypass. J. Thor. Cardiovasc. Surg., 74, 577Google Scholar
  44. 44.
    Bevan, D. R. (1978). Osmometry. 1. Terminology and principles of measurement. Anaesth., 33, 794CrossRefGoogle Scholar
  45. 45.
    Bevan, D. R. (1978). Osmometry. 2. Osmoregulation. Anaesth., 33, 801CrossRefGoogle Scholar
  46. 46.
    Bevan, D. R. (1978). Osmometry. 3. Clinical applications. Anaesth., 33, 809CrossRefGoogle Scholar
  47. 47.
    Deverall, P. B., Muss, D. C., Macartney, F. J. and Settle, J. D. (1973). Osmolal balance after open intracardiac operations in children. Thorax, 28, 756.PubMedCrossRefGoogle Scholar
  48. 48.
    Philbin, D. M., Coggins, C. H., Emerson, C. W., Levine, F. H. and Buckley, M. J. (1979). Plasma vasopressin levels and urinary sodium excretion during cardiopulmonary bypass. Comparison of halothane and morphine anaesthesia. J. Thor. Cardiovasc. Surg., 77, 582Google Scholar
  49. 49.
    Kleeman, C. R. and Cutler, R. (1963). The neuro-hypophysis. Ann. Rev. Physiol., 25, 385CrossRefGoogle Scholar
  50. 50.
    Goetz, K. K., Bond, G. C. and Bloxham, D. D. (1975). Atrial receptors and renal function. Physiol. Rev., 55, 157.PubMedGoogle Scholar
  51. 51.
    Ing, T. S., Wu, C., Rosenberg, J. C., Ng, P. S. Y., Su, W-S., Bernard, A. A. and Wilson, R. F. (1977). Cerebrospinal fluid changes in experimental cardiopulmonary bypass using haemodilution with glucose water. Neurology, 27, 85PubMedGoogle Scholar
  52. 52.
    Hewitt, R. L., Woo, R. D., Ryan, J. R. and Drapanas, T. (1972). Plasma insulin and glucose relationships during cardiopulmonary bypass. Surgery, 71, 905.PubMedGoogle Scholar
  53. 53.
    Landymore, R. W., Murphy, D. A. and Langley, W. J. (1979). Effect of cardiopulmonary bypass and hypothermia on pancreatic endocrine function and peripheral utilisation of glucose. Canad. J. Surg., 22, 248PubMedGoogle Scholar
  54. 54.
    Mills, N. L., Beaudet, R. L., Isom, O. W. and Spencer, F. C. (1973). Hyperglycemia during cardiopulmonary bypass. Ann. Surg., 177, 203.PubMedCrossRefGoogle Scholar
  55. 55.
    Kones, R. (1975). Glucose, insulin and potassium therapy for heart disease. N. Y. State J.Med., 1, 1463Google Scholar
  56. 56.
    Brachfield, N. (1973). The glucose-insulin-potassium regime in the treatment of myocardial ischaemia. Circulation, 48, 459Google Scholar
  57. 57.
    Hearse, D. J., Stewart, D. A. and Braimbridge, M. V. (1978). Myocardial protection during ischemic cardiac arrest. Possible deleterious effects of glucose and mannitol in coronary infusates. J. Thor. Cardiovasc. Surg., 76, 16Google Scholar
  58. 58.
    Neville, W. E., Thomason, R. D. and Hirsch, D. M. (1966). Postperfusion hyper-volemia after hemodilution cardiopulmonary bypass. Arch. Surg., 93, 715PubMedGoogle Scholar
  59. 59.
    Beattie, H. W., Evans, G., Garnett, E. S., Regoeczi, E., Webber, C. E. and Wong, K-L. (1974). Albumin and water fluxes during cardiopulmonary bypass. J. Thor. Cardiovasc. Surg., 67, 926Google Scholar
  60. 60.
    Dieter, R. A. Jr., Neville, W. E. and Pifarré, R. (1970). Serum electrolyte changes after cardiopulmonary by-pass with Ringer’s lactate solution used for hemodilution. J. Thor. Cardiovasc. Surg., 59, 168Google Scholar
  61. 61.
    Barnard, C. N., DeWall, R. A., Varco, R. L. and Lillehei, C. W. (1959). Pre and postoperative care for patients undergoing open cardiac surgery. Dis. Chest., 35, 194PubMedGoogle Scholar
  62. 62.
    DeWall, R. A., Warden, H. E., Gott, V. L., Read, R. C. and Lillehei, C. W. (1956). Total body perfusion for open cardiotomy utilizing the bubble oxygenator. J. Thor. Surg., 32, 591Google Scholar
  63. 63.
    Lockey, E., Longmore, D. B., Ross, D. N. and Sturbridge, M. F. (1966). Potassium and open heart surgery. Lancet, 1, 673Google Scholar
  64. 64.
    Vasko, K. A., DeWall, R. A. and Riley, A. M. (1973). Hypokalaemia: Physiological abnormalities during cardiopulmonary bypass. Ann. Thor. Surg., 15, 347CrossRefGoogle Scholar
  65. 65.
    Babka, R. and Pifarré, R. (1976). Potassium replacement during cardiopulmonary bypass. J. Thor. Cardiovasc. Surg., 73, 212.Google Scholar
  66. 66.
    Westhorpe, R. N., Varghese, Z., Petrie, A., Wills, M. R. and Lumley, J. (1978). Changes in ionized calcium and other plasma constituents associated with cardiopulmonary bypass. Br. J. Anaesth., 50, 951.PubMedCrossRefGoogle Scholar
  67. 67.
    Holden, M. P., Ionescu, M. I. and Wooler, G. H. (1972). Magnesium in patients undergoing open-heart surgery. Thorax, 27, 212.PubMedCrossRefGoogle Scholar
  68. 68.
    Khan, R. M. S., Hodge, J. S. and Bassett, H. F. M. (1973). Magnesium in open-heart surgery. J. Thor. Cardiovasc. Surg., 66, 185Google Scholar
  69. 69.
    Dagher, F. J., Lyons, J. H., Ball, M. R. and Moore, F. D. (1966). Hemorrhage in normal man: II. Effects of mannitol on plasma volume and body water dynamics following acute blood loss. Ann. Surg., 163, 505PubMedCrossRefGoogle Scholar
  70. 70.
    Das, J. B., Eraklis, A. J. and Jones, J. E. (1969). Water and solute excretion following cardiopulmonary bypass with hemodilution. The effects of the osmolarity of the perfusion prime. J. Thor. Cardiovasc. Surg., 58, 789.Google Scholar
  71. 71.
    Navar, L. G., Guyton, A. C. and Langston, J. B. (1966). Effect of alterations in plasma osmolarity on renal blood flow autoregulation. Amer J. Physiol., 211, 1387PubMedGoogle Scholar
  72. 72.
    Edde, R. R. and Smalley, S. (1979). Defect in oxygénation associated with mannitol. Anesth. Analg., 58, 145PubMedCrossRefGoogle Scholar
  73. 73.
    Coté, C. J., Greenhow, D. E. and Marshall, B. E. (1979). The hypotensive response to rapid intravenous administration of hypertonic solutions in man and in the rabbit. Anesthiol., 50, 30CrossRefGoogle Scholar
  74. 74.
    Willerson, J. T., Curry, G. C., Atkins, J. M., Parkey, R. and Horwitz, L. D. (1975). Influence of hypertonic mannitol on ventricular performance and coronary blood flow in patients. Circulation, 51, 1095PubMedGoogle Scholar
  75. 75.
    Starling, E. H. (1896). On the absorption of fluids from the connective tissue spaces. J. Physiol. (London), 19–312PubMedGoogle Scholar
  76. 76.
    Bevan, D. R. (1980). Colloid osmotic pressure. Anaesth., 35, 263CrossRefGoogle Scholar
  77. 77.
    Guyton, A. C. and Lindsey, A. W. (1959). Effect of elevated left atrial pressure and decreased plasma protein concentration on the development of pulmonary oedema. Circ. Res., 7, 649PubMedGoogle Scholar
  78. 78.
    Schüpbach, P., Pappova, E., Schilt, W., Kollar, J., Kollar, M., Sipos, P. and Vucic, D. (1978). Perfusate oncotic pressure during cardiopulmonary bypass. Optimum level as determined by metabolic acidosis, tissue oedema, and renal function. Vox Sang., 35, 332PubMedCrossRefGoogle Scholar
  79. 79.
    Laks, H., Standeven, J., Blair, O., Hahn, J., Jellinek, M. and Willman, V. L. (1977). The effects of cardiopulmonary bypass with crystalloid and colloid hemodilution on myocardial extravascular water. J. Thor. Cardiovasc. Surg., 73, 129Google Scholar
  80. 80.
    Lowenstein, E., Cooper, J. D., Erdman III, A. J., Geffin, G., Laver, M. B. and Yoshikawa, H. (1975). Lung and heart water accummulation associated with hemodilution. In K. Messmer and H. Schmid-Schönbein (eds.) Intentional Hemodilution Bibliotheca Hematologica, 41, 190 (Basel: Karger)Google Scholar
  81. 81.
    Hewson, J. R. (1978). Perfusion characteristics during cardiopulmonary bypass and subsequent changes in alveolar-arterial oxygen tension gradients. Anesth. Analg., 57, 298.PubMedGoogle Scholar
  82. 82.
    Brenner, B. M. and Humes, H. D. (1977). Mechanics of glomerular ultrafiltration. N. Engl. J. Med., 297, 148PubMedCrossRefGoogle Scholar
  83. 83.
    Rudowski, W. J. (1980). Evaluation of modern plasma expanders and blood substitutes. Br. J. Hosp. Med., 23, 389PubMedGoogle Scholar
  84. 84.
    Gruber, U. F. (1969). Blood Replacement, p. 48 (Berlin: Springer-Verlag)Google Scholar
  85. 85.
    Farrow, S. P. (1967). MSc Thesis, University of Birmingham, EnglandGoogle Scholar
  86. 86.
    Bland, J. H. L., Laver, M. B. and Lowenstein, E. (1973). Vasodilator effect of 5% plasma protein fraction. J. Am. Med. Assoc., 224, 1721CrossRefGoogle Scholar
  87. 87.
    Gruber, U. F. (1969). Blood Replacement, p. 103 (Berlin: Springer-Verlag)Google Scholar
  88. 88.
    Bergentz, S-E., Falkheden, T. and Olsson, S. (1965). Diuresis and urinary viscosity in dehydrated patients: influence of dextran 40 000, with and without mannitol. Ann. Surg., 161, 582PubMedCrossRefGoogle Scholar
  89. 89.
    Matheson, N. A. (1966). Renal failure with low-molecular weight dextran. Br. Med.J., 2, 1198CrossRefGoogle Scholar
  90. 90.
    Hässig, A. and Stampfli, K. (1969). Plasma substitutes, past and present. In P. Lundsgaard-Hansen, A. Hässig and H. Nitschmann (eds.) Modified Gelatins as Plasma Substitutes. Bibliotheca Haematologica, 33, 4 (Basel: Karger)Google Scholar
  91. 91.
    Åberg, M., Hedner, U. and Bergentz, S-E. (1977). The effect of dextran on hemos-tasis and coagulation with special regard to factor VIII. In D. H. Lewis (ed.) Dextran — 30 years. Acta. Univ. Ups. Symp. Univ. Ups., 3, 23 (Stockholm: Almqvist and Wiksell)Google Scholar
  92. 92.
    Ring, J. and Messmer, K. (1977). Incidence and severity of anaphylactoid reactions to colloid volume substitutes. Lancet, 1, 466PubMedCrossRefGoogle Scholar
  93. 93.
    Gruber, U. F. (1969). Blood Replacement, p. 133 (Berlin: Springer-Verlag).Google Scholar
  94. 94.
    Moyes, D. G. (1974). Haemodilution with a plasma expander as priming solution in cardiopulmonary bypass. S-A Mediese Tydskrif, 1615Google Scholar
  95. 95.
    Merikallio, E. (1976). Haemodilution in cardiopulmonary bypass using a gelatinc derivative for priming. Ann. Chir. Gynaecol., 65, 138.PubMedGoogle Scholar
  96. 96.
    De Vries, H. W., Zimmerman, A. N. E. and Goslinga, H. (1978). Haemodynamic and metabolic consequences of haemodilution with different diluents. Tijdschr. Diergeneesk., 103, 1057Google Scholar
  97. 97.
    Werner, F. M. (1974). Dextranen of gelatines. Ned. T. Geneesk., 118, 1121PubMedGoogle Scholar
  98. 98.
    Mullerworth, M. H., Currie, T. T., Cockbill, M. T. and Stubbs, A. E. (1973). Repolymerized gelatin as a priming solution for extracorporeal circulation: An experimental study in dogs. Surgery, 74, 666.PubMedGoogle Scholar
  99. 99.
    Metcalf, W., Papadopoulos, A., Tufaro, R. and Barth, A. (1970). A clinical physiologic study of hydroxyethyl starch. Surg. Gynecol. Obstet., 131, 255.PubMedGoogle Scholar
  100. 100.
    Mishler, J. M., Parry, E. S., Sutherland, B. A. and Bushrod, J. R. (1979). A clinical study of low molecular weight hydroxyethyl starch, a new plasma expander. Br. J. Clin. Pharmacol., 7, 619.PubMedGoogle Scholar
  101. 101.
    Holdefer, W. F. and Dowling, E. A. (1974). Experimental use of heterologous stroma-free hemoglobin solution (SHFS) as a whole blood substitute. J. Surg. Oncol., 451Google Scholar
  102. 102.
    Vasko, K. A., Riley, A. M. and DeWall, R. A. (1972). Poloxalkol (Pluronic-F68): A priming solution for cardiopulmonary bypass. Trans. Am. Soc. Artif. Organs, 18, 526Google Scholar
  103. 103.
    Sloviter, H. A. and Kamimoto, T. (1967). Erythrocyte substitute for perfusion of brain. Nature, 216, 458PubMedCrossRefGoogle Scholar
  104. 104.
    Wallace, H. W., Asher, W. J. and Li, N. L. (1973). Liquid-Liquid oxygen: a new approach. Trans. Am. Soc. Artif. Organs, 19, 80Google Scholar
  105. 105.
    Harris, E. A., Seelye, E. R. and Barratt-Boyes, B. G. (1970). Respiratory and metabolic acid-base changes during cardiopulmonary bypass in man. Br. J. Anaesth., 42, 912PubMedCrossRefGoogle Scholar
  106. 106.
    Strumia, M. M., Crosby, W. H., Gibson, J. G., Greenwalt, T. J. and Krevans, J. R. (1963). General principles of blood transfusion. Transfusion, 3, 306Google Scholar

Copyright information

© MTP Press Limited 1981

Authors and Affiliations

  • M. A. Tobias
  • J. M. Fryer

There are no affiliations available

Personalised recommendations