Adaptation of plants to saline environments: salt excretion and glandular structure

  • Nili Liphschitz
  • Yoav Waisel
Part of the Tasks for vegetation science book series (TAVS, volume 2)


Excretion of ions by special salt glands is a well known mechanism for regulating the mineral content of many halophytic plants.


Basal Cell Salt Gland Dense Cytoplasm Stalk Cell Excretion Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Arisz, W.H., Camphuis, I.J., Heikens, H. and van Tooren, A.J. 1955. The secretion of the salt gland of Limonium latifolium KTZE. Acta Bot. Neerl. 4: 322–338.Google Scholar
  2. Atkinson, M.R., Findlay, G.P., Hope, A.B., Pitman, M.G., Saddler, H.D.M. and West, K.R. 1967. Salt regulation in the mangroves Rhizophora mucronata Lam. and Aegialitis an- nulata. R. Br. Aust. J. Biol Sci. 20: 589–599.Google Scholar
  3. Berry, W.L. 1970. Characteristics of salts secreted by Tamarix aphylla. Amer. J. Bot. 57: 1226–1230.CrossRefGoogle Scholar
  4. Berry, W.L. and Thomson, W.W. 1967. Composition of salt secreted by salt glands of Tamarix aphylla. Can. J. Bot. 45: 1774–1775.CrossRefGoogle Scholar
  5. Biebel, R. and Kinzel, H. 1965. Blattban und Salzhaushalt von Laguncularia racemosa (L). Gaertn. und andere Mangrove- baume auf Puerto Rico. Österr. Bot. Z. 112: 56–93.CrossRefGoogle Scholar
  6. Bostrom, T.E. and Field, C.D. 1972. Electrical potential in the salt gland of Aegiceras. In Ion Transport in Glands: pp. 385–392. Academic Press, N. Y.Google Scholar
  7. Brown, W.V. 1958. Leaf anatomy in grass systematics. Bot. Gaz. 119: 170–178.CrossRefGoogle Scholar
  8. Brownell, F.P. and Crossland, C.J. 1972. The requirement for sodium as micronutrient by species having the C4 dicarboxylic photo synthetic pathway. Plant Physiol 49: 794–797.PubMedCrossRefGoogle Scholar
  9. Byott, G.S. 1976. Leaf air space system in C3 and C4 species. New Phytol. 76: 295–299.CrossRefGoogle Scholar
  10. Cardale, S. and Field, C.D. 1971. The structure of the salt gland of Aegiceras corniculata. Planta 99: 183.CrossRefGoogle Scholar
  11. Decker, J.P. 1961. Salt secretion by Tamarix pentandra Pall. Forest Sci. 7: 214–217.Google Scholar
  12. Downton, W.J.S. and Tregunna, E.B., 1968. Carbon dioxide compensation — its relation to photosynthetic carboxylation reaction, systematics of the Gramineae and leaf anatomy. Can. J. Bot. 46: 207–215.CrossRefGoogle Scholar
  13. de Fraine, E. 1916.. The morphology and anatomy of the genus Statice as represented at Blakenely Point. I. Statice binervosa G.E. Smith and Statice bellidifolia D.C. (= S. reticulara). Ann. Bot. 30: 239–282.Google Scholar
  14. Fahn, A. and Shimony, C. 1977. Development of the glandular and nonglandular leaf hairs of Avicennia marina (Forsskal) Vierh. Jour. Linn. Soc. 74: 37–46.CrossRefGoogle Scholar
  15. Gutirrez, M., Gracen, Y.E. and Edwards, G.E. 1974. Biochemical and cytological relationships in C4 plants. Planta 119: 279–300.CrossRefGoogle Scholar
  16. Hansen, D.J., Dayananden, P., Kaufman, P.B. and Brotherson, J.D. 1976. Ecological adaptations of salt marsh grass Distich- lis spicata (Gramineae), and environmental factors affecting its growth and distribution. Amer. J. Bot. 63: 635–650.CrossRefGoogle Scholar
  17. Helder, R.J. 1956. The loss of substances by cells and tissues (salt glands). In: Encyclopedia of Plant Physiol II. 469–486.Google Scholar
  18. Hill, A.E. 1967. Ion and water transport in Limonium. I. Active transport by the leaf gland cells. Biochem. Biophys. Acta 135: 454–460.PubMedCrossRefGoogle Scholar
  19. Hill, A.E. 1967. Ion and water transport in Limonium. II. Short circuit analysis. Ibid. 135: 461–465.Google Scholar
  20. Hill, A.E. 1967. Ion and water transport in Limonium. III. Time constant of the transport system. Ibid. 136: 66–72.Google Scholar
  21. Hill, A.E. 1967. Ion and water transport in Limonium. IV. Delay effects in transport process. Ibid. 136: 73–79.Google Scholar
  22. Leatch, W.M. 1974. The C4 syndrome: a structural analysis. Ann. Rev. Plant Physiol. 25: 27–52.CrossRefGoogle Scholar
  23. Levering, C.A. and Thomson, W.W. 1971. The ultrastructure of the salt gland of Spartina foliosa. Planta 97: 183–196.CrossRefGoogle Scholar
  24. Liphschitz, N., Shomer-Ilan, A., Eshel, A. and Waisel, Y. 1974. Salt glands on leaves of Rhodes grass Chloris gayana Kth. Ann. Bot. 38: 459–462.Google Scholar
  25. Liphschitz, N. and Waisel, Y. 1974. Existence of salt glands in various genera of the Gramineae. New Phytol. 73: 507–513.CrossRefGoogle Scholar
  26. Liphschitz, N. and Waisel, Y. 1978. Salt glands in two subfamilies of the Gramineae: Panicoideae and Chloridoideae. Intecol. 3: 9.Google Scholar
  27. Marloth, R. 1887. Zur bedeutung der Salz abscheidenen Drüsen der Tamariscineen. Ber. d. Bot. Fes. 5: 319–324.Google Scholar
  28. Pollak, G. 1975. Physiological and ecological aspects of salt excretion in Aeluropus litoralis. Ph.D. Thesis, Tel-Aviv University, Tel-Aviv.Google Scholar
  29. Pollak, G. and Waisel, Y. 1970. Salt secretation in Aeluropus litoralis (Willd.) Pari. Ann. Bot. 34: 879–888.Google Scholar
  30. Pollak, G. and Waisel, Y. 1979. Ecophysiological aspects of salt excretion in Aeluropus litoralis. Physiol. Plant. 47: 177–184.CrossRefGoogle Scholar
  31. Raghavendra, A.S. and Ramadas, V.S. 1976. Distribution of the C4 dicarboxylic acid pathway of the photosynthesis in local mönocotyledonous plants and its taxonomic significance. New Phytol. 76: 301–305.CrossRefGoogle Scholar
  32. Ramati, A. and Liphschitz, N. 1975. Preparation of plant material for microautoradiography and electron probe microanalysis: the xylene technique. Experientia 37: 1108.CrossRefGoogle Scholar
  33. Ramati, A., Liphschitz, N. and Waisel, Y. 1976. Ion localization and salt secretion in Sporobolus arenarius, (Gou.) Duv. Jour. New Phytol. 76: 289–294.CrossRefGoogle Scholar
  34. Rozema, J. 1975. An eco-physiological investigation into the salt tolerance of Glaux maritima L. Acta Bot. Neerl. 24: 407–117.Google Scholar
  35. Rozema, J. and Riphagen, I. 1977. Physiological and ecological relevance of salt secretion by the salt gland of Glaux maritima L. Oecologia 29: 349–357.CrossRefGoogle Scholar
  36. Rozema, J., Riphagen, I. and Sminia, T. 1977. A light and electron microscopical study on the structure and function of the salt gland of Glaux maritima L. New Phytol. 79: 665–671.CrossRefGoogle Scholar
  37. Ruhland, W. 1915. Untersuchungen über die Hautdrüsen derGoogle Scholar
  38. Plumbaginacean. Ein Beitrage zur der Halophyten. Jb. Wiss. Bot. 55: 409–498.Google Scholar
  39. Schtscherback, J. 1910. Über die Salzausscheidung durch die Blätter von Statice gmelini. Ber. d. Bot. Ges. 28: 30–34.Google Scholar
  40. Scholander, P.F., Hammel, H.T., Hemmingsen, E.A. and Garey, W. 1962. Salt balance in mangroves. Plant Physiol. 37: 722–729.PubMedCrossRefGoogle Scholar
  41. Shimony, C. and Fahn, A. 1968. Light and electron microscopical studies on the structure of salt glands in Tamarix aphylla L. J. Linn. Soc. Bot. 60: 283–288.CrossRefGoogle Scholar
  42. Shimony, C., Fahn, A. and Reinhold, L. 1973. Ultrastructure and ion gradients in the salt glands of Avicennia marina (Forssk) Vierh. New Phytol. 72: 27–36.CrossRefGoogle Scholar
  43. Shomer-Ilan, A. and Waisel, Y. 1973. The effect of sodium chloride on the balance between the C3 and C4 carbon fixation pathway. Physiol. Plantarum 29: 190–193.CrossRefGoogle Scholar
  44. Skelding, A.D. and Winterbotham, J. 1939. The structure and development of the hydathodes of Spartina townsendii Groves. New Phytol. 38: 69–79.CrossRefGoogle Scholar
  45. Smith, B.N. and Brown, W.V. 1973. The Kranz syndrome in the Gramineae as indicated by carbon isotopic ratios. Amer. J. Bot 60: 505–513.CrossRefGoogle Scholar
  46. Sutcliffe, J.F. 1962. Mineral Salt Absorption in Plants. Pergamon Press, London.Google Scholar
  47. Thomson. W.W. and Liu, L.L. 1967. Ultrastructural features of the salt gland of Tamarix aphylla L. Planta 73: 201–220.CrossRefGoogle Scholar
  48. Thomson, W.W., Berry, W.L. and Liu, L.L. 1969. Localization and secretion of salt by the salt glands of Tamarix aphylla. Proc. Nat. Acad. Sci. (Wash.) 63: 310–317.CrossRefGoogle Scholar
  49. Volkens, G. 1884. Die Kalkdrusen der Plumbaginean. Ber. d’ Bot. Ges. 2: 334–342.Google Scholar
  50. Volkens, G. 1887. Die Flora der Aegyptisch-Arabischen Wüste auf grundlage Anatomische-Physiologischer Forschungen dargestellt. Gebrunder Borntraeger, Berlin.Google Scholar
  51. Waisel, Y. 1961. Ecological studies on Tamarix aphylla (L.) Karst. III. The salt economy. Plant and Soil. 4: 356–364.Google Scholar
  52. Waisel, Y. 1972. Biology of Halophytes. Academic Press, New York.Google Scholar
  53. Walter, H. and Steiner, M. 1936. Die Ökologie der Ostafrikanischen Mangroven. Z. Bot. 30: 65–193.Google Scholar
  54. Wiebe, H.H. and Walter, H. 1972. Mineral ion composition of halophytic species from northern Utah. Amer. Mid. Naturalist 67: 241–245.CrossRefGoogle Scholar
  55. Ziegler, H. and Lüttge, U. 1966. Die Saltzdrüsen von Limonium vulgare. I. Die Feinstruktur. Planta 70: 193–206.CrossRefGoogle Scholar
  56. Ziegler, H. and Lüttge, U. 1967. Die Saltzdrüsen von Limonium vulgare. II. Die lokalisierung des Chlorides. Planta 14: 1–17.CrossRefGoogle Scholar

Copyright information

© Dr W. Junk Publishers, The Hague, The Netherlands 1982

Authors and Affiliations

  • Nili Liphschitz
    • 1
  • Yoav Waisel
    • 1
  1. 1.Department of BotanyTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations