Pyroglutamic acid

Non-metabolic formation, function in proteins and peptides, and characteristics of the enzymes effecting its removal
  • George N. Abraham
  • David N. Podell
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 1)

Summary

The formation of pyrrolidone carboxylic acid (PCA, pGlu) during protein biosynthesis is discussed. Studies are summarized which demonstrate that PCA is formed during the later stages of biosynthesis at the terminal phases of translation or as a post-translational event, just prior to cellular secretion of protein with amino-terminal PCA. Of the studies cited, the most convincing evidence suggests that PCA is derived from glutamine. Enzymes which selectively remove PCA from the N-terminus, and of benefit in amino-acid sequence analysis, have been isolated and shown to have a ubiquitous distribution in various animal and plant cells. The investigations which lead to the isolation of these enzymes and the procedures for their use in removing amino-terminal PCA from proteins, are described. Finally, the biologic function of PCA and the effects of its chemical modification are discussed using the neuropeptide Thyrotropin Releasing Factor (TRF) as a specific example.

Keywords

Proline Bacillus Phenylalanine Lysozyme Pyrrol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van der Werf, P. & Meister, A., 1975. Adv. Enzymology 43: 519–566.Google Scholar
  2. 2.
    Meister, A., 1973. Science 180: 33–39.PubMedCrossRefGoogle Scholar
  3. 3.
    Meister, A., 1974. Life Sciences 15: 177–190.PubMedCrossRefGoogle Scholar
  4. 4.
    Van der Werf, P., Orlowski, M. & Meister, A., 1971. Proc. Natl. Acad. Sci. 68: 2982–2985.PubMedCrossRefGoogle Scholar
  5. 5.
    Kitos, P. A. & Waymouth, C., 1966. J. Cell Physiology 67: 383–398.CrossRefGoogle Scholar
  6. 6.
    Moav, B. & Harris, T. N., 1967. Biochem. Biophys. Res. Comm. 29: 773–776.PubMedCrossRefGoogle Scholar
  7. 7.
    Bernfield, M. R. & Nestor, T., 1968. Biochem. Biophys. Res. Comm. 33: 843–848.PubMedCrossRefGoogle Scholar
  8. 8.
    Messer, M. & Otteson, M., 1964. Biochem. Biophys. Acta 92: 409–412.PubMedGoogle Scholar
  9. 9.
    Baglioni, C., 1970. Biochem. Biophys. Res. Comm. 38: 212–219.PubMedCrossRefGoogle Scholar
  10. 10.
    Rush, E. A. & Starr, J. L., 1970. Biochem. Biophys. Acta 199: 41–55.PubMedGoogle Scholar
  11. 11.
    Rush, E. A., McLaughlin, C. A. & Starr, J. L., 1971. Cancer Research 31: 1 134–1139.Google Scholar
  12. 12.
    Twardzik, D. R. & Peterkofsky, A., 1972. Proc. Natl. Acad. Sci. 69: 274–277.PubMedCrossRefGoogle Scholar
  13. 13.
    Stott, D. I. & Munro, A., 1972. Biochem. J. 128: 1221–1227.PubMedGoogle Scholar
  14. 14.
    Jones, G. H. 1974. Biochem. 13: 855–860.CrossRefGoogle Scholar
  15. 15.
    Prasad, C. & Peterkofsky, A., 1975. J. Biol. Chem. 250: 171–179.PubMedGoogle Scholar
  16. 16.
    Burstein, Y., Kantor, F. & Schechter, I., 1976. Proc. Natl. Acad. Sci. 73: 2604–2608.PubMedCrossRefGoogle Scholar
  17. 17.
    Burstein, Y. & Schechter, I., 1977. Biochem. J. 165: 347–354.PubMedGoogle Scholar
  18. 18.
    Kabat, E. A., Wu, T. T. & Bilofsky, H., 1979. In: Sequences of Immunoglobulin Heavy Chains. U.S. Department of Health, Education and Welfare, NIH publication No. 80 - 2008.Google Scholar
  19. 19.
    Kaplan, A. P., Hood, L., Terry, W. D. & Metzger, H., 1968. Immunochem. 8: 801–811.CrossRefGoogle Scholar
  20. 20.
    Takahaski, S. & Cohen, L. A., 1966. Biochem. 5: 864–870.Google Scholar
  21. 21.
    Doolittle, R. F. & Armentrout, R. W., 1968. Biochem. 7: 516–521.CrossRefGoogle Scholar
  22. 22.
    Armentrout, R. W. & Doolittle, R. F., 1969. Arch. Biochem. Biophys. 132: 80–90.PubMedCrossRefGoogle Scholar
  23. 23.
    Uliana, J. A. & Doolittle, R. F., 1969. Arch. Biochem. Biophys. 131: 561–565.PubMedCrossRefGoogle Scholar
  24. 24.
    Armentrout, R. W„ 1969. Biochem. Biophys. Acta 191: 756–759.PubMedGoogle Scholar
  25. 25.
    Szewczuk, A. & Mulczyk, M., 1969. Eur. J. Biochem. 8: 63–67.PubMedCrossRefGoogle Scholar
  26. 26.
    Szewczuk, A. & Kwiatkowska, J., 1970. Eur. J. Biochem. 15: 92–96.PubMedCrossRefGoogle Scholar
  27. 27.
    Albert, Z. & Szewszuk, A., 1972. Acta Histochem. Bd. 44: 98–105.Google Scholar
  28. 28.
    Exterkate, F. A., 1977. J. Bacteriology 129: 1281–1288.Google Scholar
  29. 29.
    Abraham, G. N., unpublished data.Google Scholar
  30. 30.
    Podell, D. N. & Abraham, G. N., 1978. Biochem. Biophys. Res. Comm. 81: 176–185.PubMedCrossRefGoogle Scholar
  31. 31.
    Franklin, E. C., Prelli, F.,& Frangione, B., 1978. Proc. Natl. Acad. Sci. 76: 452–456.CrossRefGoogle Scholar
  32. 32.
    Chiu, Y.-H., Lopez de Castro, J. A. & Poljak, R. J., 1979. Biochem. 18: 553–560.CrossRefGoogle Scholar
  33. 33.
    Reid, K. B. M. & Thompson, E. O. P., 1978. Biochem. J. 173: 863–868.PubMedGoogle Scholar
  34. 34.
    Gerber, G., Anderegg, R. J., Herlihy, W. C., Gray, C. P., Biemann, K. & Khorana, H. G., 1979. Proc. Natl. Acad. Sci. 76: 227–231.PubMedCrossRefGoogle Scholar
  35. 35.
    Jacobs, L. S., Snyder, P. J., Wilber, J. F., Utiger, R. D. & Daughaday, W. H., 1971. J. Clin. Endocrinol. 33: 996–998.CrossRefGoogle Scholar
  36. 36.
    Hinkle, P. M. & Tashjian, A. H., Jr., 1973. J. Biol. Chem. 248: 6180–6186.PubMedGoogle Scholar
  37. 37.
    Dannies, P. S. & Tashjian, A. H., Jr., 1973. J. Biol. Chem. 248: 6174–6179.PubMedGoogle Scholar
  38. 38.
    Vale, W., Grant, G. & Guillemin, R., 1973. In: Frontiers in Neuroendocrinology (Ganong, W. F. & Martin, L., eds.), pp. 375–397. Oxford University Press, Toronto.Google Scholar
  39. 39.
    Goren, H. J., Baure, L. G. & Vale, W., 1977. Molecular Pharm. 13: 606–614.Google Scholar
  40. 40.
    Fett, J. W. & Deutsch, H. F., 1974. Biochem. 13: 4102–4114.CrossRefGoogle Scholar
  41. 41.
    Schiffer, M., Girling, R. L., Ely, K. R., & Edmundson, A. B., 1973. Biochem. 12: 4620–4631.CrossRefGoogle Scholar
  42. 42.
    Poljak, R. J., Amzel, L. M., Chen, B. L., Phizackerley, R. P. & Saul, F., 1974. Proc. Natl. Acad. Sci. 71: 3440.PubMedCrossRefGoogle Scholar
  43. 43.
    Wolfersberger, M. G. & Tabachnik, J., 1973. Experientia 29: 346–347.PubMedCrossRefGoogle Scholar
  44. 44.
    Wilk, S. & Orlowski, M., 1973. FEBS Letters 33: 157–160.PubMedCrossRefGoogle Scholar
  45. 45.
    Lam, Y.-K., Knudsen, R., Folkers, K., Frick, W., Daves, G. D., Barofsky, D. F. & Bowers, C. Y., 1978. Biochem. Biophys. Res. Commun. 81: 680–683.PubMedCrossRefGoogle Scholar
  46. 46.
    Stone, T. W., 1976. Experientia 32: 581–583.PubMedCrossRefGoogle Scholar
  47. 47.
    Stone, T. W., 1976. J. Physiol. 257: 187–198.PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff/Dr. W. Junk Publishers, The Hague 1981

Authors and Affiliations

  • George N. Abraham
    • 1
    • 2
  • David N. Podell
    • 1
    • 2
  1. 1.Dept. of MedicineCenter for Interdisciplinary Research in Immunologic Diseases of the University of Rochester School of Medicine and DentistryRochesterUSA
  2. 2.Dept. of MicrobiologyCenter for Interdisciplinary Research in Immunologic Diseases of the University of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations