The zooplankton: its community structure, food and feeding, and role in the ecosystem of Lake Vechten

  • R. D. Gulati
  • K. Siewertsen
  • G. Postema
Part of the Developments in Hydrobiology book series (DIHY, volume 11)


The structure, feeding and metabolism of the filterfeeders community of Lake Vechten (The Netherlands) were investigated for seven years in relation to the functioning of the lake’s ecosystem. The 14C-technique used in the grazing and assimilation study is discussed in detail with a critical analysis of the methodological errors.

The three major species which contributed to the annual density, biomass and grazing maxima in spring are: Bosmina longirostris, Daphnia spp. and Eudiaptomus gracilis. The rise in grazing pressure in recent years, particularly in May, was accompanied by a corresponding decrease in the seston (<33 µm) biomass, and in increase of inedible algae, especially Ceratium hirudinella, in late summer. The means of daily grazing ranged from 3% in March to 34% in June. The mean annual ratio ingestion: phytoplankton production varied from 70 to 230%. The specific filtering rate, SFR (ml · day-1 · mg-1 · zoop · C), was related directly to water temperature but inversely to the food concentrations.

The main errors in the ingestion and assimilation rates were related to the leaching of the isotope from the animals in the preservation fluid. The loss of tracer was 42 and 26%, respectively, for the two rates.

In spring, the food removed by the grazers per day was equivalent to 125–400% of the daily primary production. This caused a sharp decrease in the seston concentrations and a recurring ‘clear water’ phase because of a sharp increase in the Secchi depth. The zooplankton assimilatory removal of carbon and the sedimentation loss rates to the hypolimnion exceeded the primary production rates. The inconsistencies in the carbon budget are possibly due to our lack of knowledge of the horizontal transport of material from the littoral, bacteria as an alternative food source for zooplankton, and the DOC dynamics.

The grazers’ activity as SFR in deep, stratifying lakes like Vechten is 3 to 4 times that in the shallow, mixed and more eutrophic Dutch lakes. In the former category of lakes the crustacean herbivores serve as an important link in the food chain in the limnetic region.


zooplankton filter-feeders filtering rates seston feeding assimilation methodological errors of 14C-technique physiological efficiencies turnover rates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, D. E., 1971. Ingestion, assimilation, survival, and reproduction by Daphnia pulex fed seven species of blue-green algae. Limnol. Oceanogr. 16: 906–920.CrossRefGoogle Scholar
  2. Bell, R. K. & Ward, F. J., 1970. Incorporation of organic carbon by Daphnia pulex. Limnol. Oceanogr. 15: 713–726.CrossRefGoogle Scholar
  3. Best, E. P. H., 1982. The aquatic macrophytes of Lake Vechten. Species composition, spatial distribution and production. Hydrobiologia 95: 65–77.CrossRefGoogle Scholar
  4. Best, E. P. H., Blaauboer, M. C. I., Cappenberg, Th. E., Gons, H. J., Gulati, R. D., Kloet, W. A. de, Steenbergen, C. L. M. & Verdouw, H., 1978. Towards an integrated study of the ecosystem of Lake Vechten. Hydrobiol. Bull. 12: 107–118.CrossRefGoogle Scholar
  5. Blaauboer, M. C. I., 1982. The phytoplankton species composition and the seasonal periodicity in Lake Vechten from 1956 to 1979. Hydrobiologia 95: 25–36.CrossRefGoogle Scholar
  6. Brooks, J. L. & Dodson, S. I., 1965. The effects of prey size selection by lake planktivores. Syst. Zool. 17: 272–291.Google Scholar
  7. Butter, M. E., 1981. Estimation of Zooplankton in lake Maarsseveen I: Problems, procedures and results. Hydrobiol. Bull. 15: 51–59.CrossRefGoogle Scholar
  8. Cappenberg, Th. E. & Verdouw, H., 1982. Sedimentation and breakdown kinetics of organic matter in the anaerobic zone of Lake Vechten. Hydrobiologia 95: 165–179.CrossRefGoogle Scholar
  9. Comita, G. W. & Anderson, G. C., 1959. The seasonal development of a population of Diaptomus ashlandi Marsh, and related phytoplankton cycles in lake Washington. Limnol. Oceanogr. 4: 37–52.CrossRefGoogle Scholar
  10. Conover, R. J., 1966. Factors affecting the assimilation of organic matter by Zooplankton and the question of superfluous feeding. Limnol. Oceanogr. 11: 346–354.CrossRefGoogle Scholar
  11. Conover, R.J. & Francis, V., 1973. The use of radioactive isotopes to measure the transfer of materials in aquatic food chains. Mar. Biol. 18: 272–283.Google Scholar
  12. Cooper, D. C., 1973. Enhancement of net primary productivity by herbivore grazing in aquatic laboratory microcosms. Limnol. Oceanogr. 18: 31–37.CrossRefGoogle Scholar
  13. Copping, A. E. & Lorenzen, C. J., 1980. Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as a tracer. Limnol. Oceanogr. 25: 873–882.CrossRefGoogle Scholar
  14. Dagg, M. J., 1976. Complete carbon and nitrogen budgets for the carnivorous amphipod, calliopius laeviusculus(Krøyer). Int. Revue ges. Hydrobiol. 61: 297–357.CrossRefGoogle Scholar
  15. Davis, R. G., 1971. Computer Programming in Quantitative Biology. Academic Press, London. 492 pp.Google Scholar
  16. Elster, H. J., 1954. Über die Populationsdynamik von Eudiaptomus gracilis Sars and Heterocope borealis Fischer in Bodensee-Obersee. Arch. Hydrobiol., Suppl. 20: 546–614.Google Scholar
  17. Flik, B. J.G. & Keyser, A., 1981. Estimation of the primary production in Lake Maarsseveen I with an incubator technique. Hydrobiol. Bull. 15: 41–50.CrossRefGoogle Scholar
  18. Frost, B. W., 1980. Grazing. In: Morris, I. (Ed.)The Physiological Ecology of Phytoplankton (Studies in Ecology, Vol. 7), pp. 465–491. Blackwell Scientific, Oxford.Google Scholar
  19. Geller, W., 1975. Die Nahrungsaufnahme von Daphnia pulex in Abhängigkeit von der Futterkonzentration, der Temperatur, der Körpergrösse und dem Hungerzustand der Tiere. Arch. Hydrobiol., Suppl. 48: 47–107.Google Scholar
  20. Geller, W. & Müller, H., 1981. The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia 49: 316–321.CrossRefGoogle Scholar
  21. Gliwicz, Z. M., 1967. The contribution of nannoplankton in pelagial primary production in some lakes with varying trophy. Bull. Acad. pol. Sei., CI. II 15: 343–347.Google Scholar
  22. Gliwicz, Z. M., 1968. The use of anaesthetizing substances in the studie on the food habits of Zooplankton communities. Ekol. pol., Ser. A. 16: 279–295.Google Scholar
  23. Gliwicz, Z. M., 1969a. Studies on the feeding of pelagic zooplankton in lakes with varying trophy. Ekol. pol., Ser. A. 17: 663–707.Google Scholar
  24. Gliwicz, Z. M., 1969b. The share of algae, bacteria and trypton in the food of the pelagic Zooplankton of lakes with various trophic characteristics. Bull. Acad. pol. Sci. 17: 159–165.Google Scholar
  25. Gliwicz, Z. M. & Hillbricht-Illkowska, A., 1972. Efficiency of the utilization of nannoplankton primary production by communities of filterfeeding animals measured in situ. Verh. int. Verein. Limnol. 18: 197–203.Google Scholar
  26. Gliwicz, Z. M. & Hillbricht-Illkowska, A., 1975. Ecosystem of the Mikolajskie Lake. Elimination of phytoplankton biomass and its subsequent fate in lake through the year. Pol. Arch. Hydrobiol. 22: 39–52.Google Scholar
  27. Golterman, H. L., 1969. Methods for Chemical Analysis of Freshwater. LB.P. Handbook, No. 8. Blackwell Scientific, Oxford. 172 pp.Google Scholar
  28. Golterman, H. L. & Kouwe, F. A., 1980. Chemical budgets and nutrient pathways. In: Le Cren, E. D. & Lowe-McConnell, R. H. (Eds.) The Function of Freshwater Ecosystems, LB.P. No. 22, pp. 85–140. Cambridge University Press, Cambridge.Google Scholar
  29. Gons, H., 1981. Project ‘Carbon cycle in Lake Vechten’. In: Progress Report Limnological Institute 1980, Verh. k. ned. Akad. Wetensch., Afd. Natuurk. 2 rks, 77: 30–36.Google Scholar
  30. Gons, H., 1982. Structural and functional characteristics of epiphyton and epipelon in relation to their distribution in Lake Vechten. Hydrobiologia 95: 79–114.CrossRefGoogle Scholar
  31. Gophen, M., Cavari, B. Z. & Berman, T., 1974. Zooplankton feeding on differentially labelled algae and bacteria. Nature 247: 393–394.CrossRefGoogle Scholar
  32. Gulati, R. D., 1972. Limnological studies on some lakes in the Netherlands. Freshwat. Biol. 2: 37–54.CrossRefGoogle Scholar
  33. Gulati, R. D., 1975. A study on the role of herbivorous zooplankton community as primary consumers of phytoplankton in Dutch lakes. Verh. int. Verein. Limnol. 19: 1202–1210.Google Scholar
  34. Gulati, R. D., 1976. Studies on the food, grazing and metabolism of a filter feeder community of Zooplankton in the lakes Vechten and Tjeukemeer. Hydrobiol. Bull. 10: 10–12.CrossRefGoogle Scholar
  35. Gulati, R. D., 1978a. Vertical changes in the filtering, feeding and assimilation rates of dominant zooplankters in a stratified lake. Verh. int. Verein. Limnol. 20: 950–956.Google Scholar
  36. Gulati, R. D., 1978b. The ecology of common planktonic crustacea of the freshwaters in the Netherlands. Hydrobiologia 59: 101–112.CrossRefGoogle Scholar
  37. Gulati, R. D., Siewertsen, K. & Postema, G., 1981. Phytoplankton-zooplankton interactions. In: Progress Report Limnological Institute 1980. Verh. k. ned. Akad. Wetensch., Afd. Natuurk. 2 rks. 77: 12–16.Google Scholar
  38. Gulati, R. D., Siewertsen, K. & Postema, G., 1982. Grazing studies in Loosdrechts lakes. In: Progress Report Limnological Institute 1981, Verh. k. ned. Akad. Wetensch., Afd. Naturk. 2 rks. (in press).Google Scholar
  39. Hall, D. J., 1964. An experimental approach to the dynamics of a natural population of Daphnia galeata mendotae. Ecology 45: 94–112.CrossRefGoogle Scholar
  40. Hall, D. J., Threlkeld, S.T., Burns, C. W. & Crowley, P. H., 1976. The size-efficiency hypothesis and the size structure of Zooplankton communities. Annu. Rev. Ecol. Syst. 7: 177–208.CrossRefGoogle Scholar
  41. Haney, J. F., 1971. An in situ method for the measurement of Zooplankton grazing rates. Limnol. Oceanogr. 16: 970–977.CrossRefGoogle Scholar
  42. Haney, J. F., 1973. An in situ examination of the grazing activities of natural Zooplankton communities. Arch. Hydrobiol. 72: 87–132.Google Scholar
  43. Haney, J. F. & Hall, D. J., 1975. Diel vertical migration and filterfeeding activities of Daphnia. Arch. Hydrobiol. 75: 413–441.Google Scholar
  44. Hillbricht-Illkowska, A., Spodniewska, I., Wegleńska, T. & Karabin, A., 1972. The seasonal variation of some ecological efficiencies and production rates in the plankton community of several Polish lakes of different trophy. In: Kajak, Z. & Hillbricht-Illkowska, A. (Eds.) Productivity Problems of Freshwaters, pp. 111–127.Google Scholar
  45. Hillbricht-Illkowska, A., Spodniewska, I. & Wegleńska, T., 1979. Changes in the phytoplankton-zooplankton relationship connected with the eutrophication of lakes. Symp. Biol. Hung. 19: 59–75.Google Scholar
  46. Holtby, L. B. & Knoechel, R., 1981. Zooplankton filtering rates: error due to loss of radioisotopic label in chemically preserved samples. Limnol. Oceanogr. 26: 774–780.CrossRefGoogle Scholar
  47. Hulsmann, A. D. & Ringelberg, J. (in prep.) In situ graasonderzoek in de Grote Maarsseveense Pias (Chapter, Ph.D. thesis, of A. D. Hulsmann: in Dutch). University of Amsterdam, Amsterdam.Google Scholar
  48. Hutchinson, G. E., 1967. A Treatise on Limnology. II. Introduction to Lake Biology and the Limnoplankton. John Wiley, New York. 1115 pp.Google Scholar
  49. Jacobs, R. P. W. M. & Bouwhuis, A. M. J., 1979. The year cycle of Eudiaptomus vulgaris (Schmeil, 1896) (Copepoda, Calanoida) in a small, acid waterbody during 1973. Development in the natural habitat and relationships between temperature and duration of developmental stages. Hydrobiologia 64: 17–36.CrossRefGoogle Scholar
  50. Kloet, W. A. de, 1982. The primary production of phytoplankton in Lake Vechten. Hydrobiologia 95: 37–57.CrossRefGoogle Scholar
  51. Koole, E. & Vulto, T., 1976. Een onderzoek naar phyto- en zoöplanktonrelaties en energietransfer in plasje Vechten (west). Student Rep. (in Dutch) Limnol. Inst. 1977–2, 77 pp.Google Scholar
  52. Lampert, W., 1975. A tracer study on the carbon turnover of Daphnia pulex. Verh. int. Verein. Limnol. 19: 2913–2921.Google Scholar
  53. Lampert, W., 1977a. Studies on the carbon balance of Daphnia pulex as related to environmental conditions. I. Methodological problems of the use of 14C for the measurement of carbon assimilation. Arch. Hydrobiol, Suppl. 48: 287–309.Google Scholar
  54. Lampert, W., 1977b. Studies on the carbon balance of Daphnia pulex De Geer as related to environmental conditions. II. The dependence of carbon assimilation on animal size, temperature, food concentration and diet species. Arch. Hydrobiol., Suppl. 48: 310–335.Google Scholar
  55. Lampert, W., 1977c. Studies on the carbon balance of Daphnia pulex De Geer as related to environmental conditions. III. Production and production efficiency. Arch. Hydrobiol., Suppl. 48: 336–360.Google Scholar
  56. Lampert, W., 1978. Climatic conditions and planktonic interactions as factors controlling the regular succession of spring algal bloom and extremely clear water in Lake Constance. Verh. int. Verein. Limnol. 20: 969–974.Google Scholar
  57. Lei, C. & Armitage, K. B., 1980. Energy budget of Daphnia ambigua Scourfield. J. Plankton Res. 2: 261–281.CrossRefGoogle Scholar
  58. Leussink, J. A., 1956. Het plankton, de temperatuur, het zuur- stofgehalte en hun onderling verband in de plas bij Vechten, gedurende een deel van 1956. Student Report (in Dutch). Univ. Utrecht. 10 pp.Google Scholar
  59. Mackereth, F. J. H., 1964. An improved galvanic cell for determination of oxygen concentrations in fluids. J. sci. Inst. 41: 38–41.CrossRefGoogle Scholar
  60. Nauwerck, A., 1959. Zur Bestimmung der Filtrierrate limnischer Planktontiere. Arch. Hydrobiol. Suppl. 25: 83–101.Google Scholar
  61. Nauwerck, A., 1963. Die Beziehungen zwischen Zooplankton und Phytoplankton im See Erken. Symb. bot. uppsal. 17: 1–164.Google Scholar
  62. Nauwerck, A., Duncan, A., Hillbricht-Illkowska, A. & Larsson, P., 1980. Zooplankton. In: Le Cren, E. D. & Lowe McConnell, R. H. (Eds.) The Function of Freshwater Ecosystems, I.B.P. No. 22, pp. 85–140. Cambridge University Press, Cambridge.Google Scholar
  63. Nowak, K. E., 1975. Die Bedeutung des Zooplanktons für den Stoffhaushalt des Schierensees. Arch. Hydrobiol. 75: 149–224.Google Scholar
  64. Olie, J. J. & Cappenberg, Th. E., 1982. Aspects of aerobic mineralization during spring in Lake Vechten with special reference to the 14C-labelling technique. Hydrobiologia 95: 181–190.CrossRefGoogle Scholar
  65. Parma, S., 1971. Chaoborus flavicans (Meigen) (Diptera, Chaoboridae): an autecological study. Thesis, Groningen University. 128 pp.Google Scholar
  66. Parma, S., 1980. Historie en morfometrie van ‘Vechten’ (in Dutch). Intern. Rep., Limnol. Inst., 1980–3. 20 pp.Google Scholar
  67. Parma, S., 1982. The twenty-fifth anniversary of the Limnological Institute, The Netherlands (1957–1982). Hydrobiologia 95: 1–9.CrossRefGoogle Scholar
  68. Porter, K. G., 1977. The plant-animal interface in freshwater ecosystems. Am. Scient. 65: 159–170.Google Scholar
  69. Postema, G. & Siewertsen, K., 1981. De consumptie- en assimi- latiesnelheden van het herbivore Zooplankton in het plasje ‘Vechten’(in Dutch). Intern. Rep. Limnol. Inst. 1981–1. 23 pp.Google Scholar
  70. Rigler, F. H., 1971. Feeding rates: Zooplankton. In: Edmondson, W. T. & Winberg, G. G. (Eds.) A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. I.B.P. Handbook No. 17, pp. 228–255. Blackwell Scientific, Oxford.Google Scholar
  71. Ringelberg, J., 1981. A diel study in a water column of lake Maarsseveen I. Hydrobiol. Bull. 15: 60–71.CrossRefGoogle Scholar
  72. Schindler, J. E., 1971. Food quality and Zooplankton nutrition. J. Anim. Ecol. 40: 589–595.CrossRefGoogle Scholar
  73. Serruya, C., Gophen, M. & Pollingher, U., 1980. Lake Kinneret: carbon flow patterns and ecosystem management. Arch. Hydrobiol. 88: 265–302.Google Scholar
  74. Siewertsen, K., 1979. Een biochemisch planktononderzoek in het plasje ‘Vechten’ (in Dutch). Intern. Rep. Limnol. Inst. 1979–3, 29 pp.Google Scholar
  75. Silver, M. W. & Davoll, P. J., 1978. Loss of 14C activity after chemical fixation of phytoplankton: error source for autoradiography and other productivity measurements. Limnol. Oceanogr. 23: 362–368.CrossRefGoogle Scholar
  76. Steenbergen, C. L. M., 1982. Contribution of photosynthetic sulphur bacteria to primary production in Lake Vechten. Hydrobiologia 95: 59–64.CrossRefGoogle Scholar
  77. Steenbergen, C. L. M. & Verdouw, H., 1982. Lake Vechten: aspects of its morphometry, climate, hydrology and physicochemical characteristics. Hydrobiologia 95: 11–23.CrossRefGoogle Scholar
  78. Suchchenya, L. M., 1969. Quantitative relations of metabolism and transformation of matter and energy in Crustacea. Fish. Res. Bd Can. Trans., Ser. 1374. (Ph.D. thesis).Google Scholar
  79. Suchchenya, L. M., 1970. Food rations, metabolism and growth of crustacean. In: Steele, J. H. (Ed.), Marine Food Chains, pp. 127–141. University of California Press, Berkeley.Google Scholar
  80. Vijverberg, J., 1980. Effect of temperature in laboratory studies on development and growth of Cladocera and Copepoda from Tjeukemeer, The Netherlands. Freshwat. Biol. 10: 317–340.CrossRefGoogle Scholar
  81. Weekenstroo, J. E., Parma, S. & Gulati, R. D. (in prep.). The larvae of Chaoborus flavicans (Meigen) in Lake Vechten (The Netherlands): the decrease in the densities and its relation to Zooplankton predation.Google Scholar
  82. Wegleńska, T., 1971. The influence of various concentrations of natural food on the development, fecundity and production of planktonic filtrators. Ecol. pol., Ser. A. 19: 427–473.Google Scholar
  83. Welch, H. E., 1968. Relationships between assimilation efficiencies and growth efficiencies for aquatic consumers. Ecology 49: 755–759.CrossRefGoogle Scholar
  84. Wetzel, R. G., 1975. Limnology. Saunders Philadelphia. 740 pp.Google Scholar
  85. Winberg, G.G. et al., 1971. Symbols, Units and Conversion Factors of Freshwater Productivity. IBP, London. 23 pp.Google Scholar
  86. Winberg, G. G., 1972. Some results of Soviet IBP investigations on lakes. In: Kajak, Z. & Hillbricht-Illkowska, A. (Eds.). Winberg, G. G., pp. 363–381. Krakow.Google Scholar

Copyright information

© Dr W. Junk Publishers, The Hague 1982

Authors and Affiliations

  • R. D. Gulati
    • 1
  • K. Siewertsen
    • 1
  • G. Postema
    • 1
  1. 1.‘Vijverhof’ LaboratoryLimnological InstituteNieuwersluisThe Netherlands

Personalised recommendations