Structural and functional characteristics of epiphyton and epipelon in relation to their distribution in Lake Vechten

  • Herman J. Gons
Part of the Developments in Hydrobiology book series (DIHY, volume 11)


Epiphyton and epipelon were quantitatively collected, respectively, from the submerged macrophytes and the sandy lake bottom of Lake Vechten (The Netherlands). On a weight basis, epiphyton was maximal in autumn and epipelon in summer. In winter the chemical composition of epiphyton and epipelon was similar. In summer the epiphyton had on a unit weight basis more organic matter and carbonate, and had per unit organic matter a higher algal number, nitrogen and energy content than the epipelon. Algae predominating the epiphyton were filamentous greens and pennate diatoms; those in the epipelon were pennate diatoms and blue-green algae. In both cases, species known to frequent the phytoplankton were abundant. The diatoms were quantified using paper chromatographic pigment analyses. Both the epiphyton and the epipelon exhibited maximal photosynthesis in mid summer. That light was generally the limiting factor was evident from periphyton developed on artificial substrates. This periphyton differed widely in its composition from that on the natural substrates, mainly because the latter collected much more sedimenting matter.

In dense Ceratophyllum stands light was severely attenuated and the significant gradients in oxygen and pH were caused by the differences with depth in the proportions of photosynthesis and respiration. The oxygen content and pH at the bottom decreased owing to epipelic respiration. The epiphytic composition depended greatly on the degree of light attenuation. The epiphytic and epipelic respiration, except during part of the early summer, exceeded photosynthesis on a 24 h basis; this included the macrophytic photosynthesis during the time the vegetation was maximally developed. During the growing season import of organic matter, i.e. deposited seston, greatly exceeded that due to the photosynthetic production. After the summer maximum, the epipelon decreased faster than predicted from its oxygen exchange. It was concluded that sedimentation and resuspension determined mainly the changes in epiphyton and epipelon. Especially when covered with vegetation, the lower littoral of Lake Vechten plays a large part in the aerobic decomposition of sestonic organic matter.


periphyton submerged macrophytes sediment artificial substrates oxygen exchange production decomposition sedimentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Admiraal, W., 1977. Salinity tolerance of benthic estuarine diatoms as tested with a rapid polarographic measurement of photosynthesis. Mar. Biol. 39: 11–18.CrossRefGoogle Scholar
  2. Admiraal, W. & Peletier, H., 1979. Influence of organic compounds and light limitation on the growth of estuarine benthic diatoms. Br. phycol. J. 14: 197–206.CrossRefGoogle Scholar
  3. Allanson, B. R., 1973. The fine structure of the periphyton of Chara sp. and Potamogeton natans from Wytham Pond, Oxford, and its significance to the macrophyte-periphyton metabolic model of R. G. Wetzeland H. L. Allen. Freshwat. Biol. 3: 535–541.CrossRefGoogle Scholar
  4. Allen, H. L., 1971. Primary productivity, chemo-organotrophy and nutritional interactions of epiphytic algae and bacteria on macrophytes in the littoral of a lake. Ecol. Monogr. 41: 97–127.CrossRefGoogle Scholar
  5. Best, P. H., 1979. Ecophysiological studies on growth and development of the aquatic macrophyte Ceratophyllum demersum L. Thesis, State University of Utrecht. 104 pp.Google Scholar
  6. Best, P. H., 1982. The aquatic macrophytes of Lake Vechten. Species composition, spatial distribution and production. Hydrobiologia 95: 65–77.CrossRefGoogle Scholar
  7. Blaauboer, M. C. I., 1982. The phytoplankton species composition and the seasonal periodicity in Lake Vechten from 1956 to 1979. Hydrobiologia 95: 25–36.CrossRefGoogle Scholar
  8. Buscemi, P. A., 1958. Littoral oxygen depletion produced by a cover of Elodea canadensis. Oikos 9: 239–245.CrossRefGoogle Scholar
  9. Cappenberg, Th. E. & Verdouw, H., 1982. Sedimentation and breakdown kinetics of organic matter in the anaerobic zone of Lake Vechten. Hydrobiologia 95: 165–179.CrossRefGoogle Scholar
  10. Castenholz, R. W., 1960. Seasonal changes in the attached algae of freshwater and saline lakes in the lower Grand Coulee, Washington. Limnol. Oceanogr. 5: 1–28.CrossRefGoogle Scholar
  11. Cattaneo, A., 1978. The microdistribution of epiphytes on the leaves of natural and artificial macrophytes. Br. phycol. J. 13: 183–188.CrossRefGoogle Scholar
  12. Cattaneo, A., Ghittori, S. & Vendegra, V., 1975. The development of benthic phytocoenosis on artificial substrates in the Ticino River. Oecologia 19: 315–327.Google Scholar
  13. Cattaneo, A. & Kalff, J., 1980. The relative contribution of aquatic macrophytes and their epiphytes to the production of macrophyte beds. Limnol. Oceanogr. 25: 280–289.CrossRefGoogle Scholar
  14. Cholnoky, B. J., 1968. Die Ökologie der Diatomeen in Binnengewässern. Cramer, Lehre, 699 pp.Google Scholar
  15. Dvořák, J. & Best, P. H., 1982. Macro-invertebrate communities associated with water vegetation in Lake Vechten. Hydrobiologia 95: 115–126.CrossRefGoogle Scholar
  16. Eminson, D. & Phillips, G., 1978. A laboratory experiment to examine the effects of nutrient enrichment on macrophyte and epiphyte growth. Verh. int. Verein. Limnol. 20: 82–87.Google Scholar
  17. Fitzgerald, G. P., 1969. Some factors in the competition or antagonism between bacteria, algae and aquatic weeds. J. Phycol. 5: 351–359.CrossRefGoogle Scholar
  18. Göns, H. J. & Mur, L. R., 1980. Energy requirements for growth and maintenance of Scenedesmus protuberans Fritsch in light-limited continuous cultures. Arch. Microbiol. 125: 9–17.CrossRefGoogle Scholar
  19. Gulati, R. D., Siewertsen, K. & Postema, G., 1982. The zooplankton: its community structure, food and feeding, and role in the ecosystem of Lake Vechten. Hydrobiologia 95: 127–163.CrossRefGoogle Scholar
  20. Hager, A. & Stransky, H., 1970a. Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xantophyll-cyclus in verschiedenen Algenklassen. III. Grünalgen. Arch. Mikrobiol. 72: 68–83.PubMedCrossRefGoogle Scholar
  21. Hager, A. & Stransky, H., 1970b. Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyll-cyclus in verschiedenen Algenklassen. V. Einzelne Vertreter der Cryptophyceae, Euglenophyceae, Bacillariophyceae, Chrysophyceae und Phaeophyceae. Arch. Mikrobiol. 73: 77–89.PubMedCrossRefGoogle Scholar
  22. Hallegraeff, G. M., 1976. Pigment diversity, biomassand species diversity of phytoplankton of three Dutch lakes. Thesis, University of Amsterdam. 177 pp.Google Scholar
  23. Harris, G. P., 1978. Photosynthesis, productivity and growth: The physiological ecology of phytoplankton. Arch. Hydrobiol. Beih. 10: 1–171.Google Scholar
  24. Hellebust, J. A. & Lewin, J., 1977. Heterotrophic nutrition. In: Werner, D. (Ed.) The Biology of Diatoms. Blackwell, Oxford. 288 pp.Google Scholar
  25. Hoek, C. van den, 1978. Algen. Einführung in die Phykologie. Thieme, Stuttgart. 481 pp.Google Scholar
  26. Hooper, N. M. & Robinson, G. G. C., 1976. Primary production of epiphytic algae in a marsh pond. Can. J. Bot. 54: 2810–2815.CrossRefGoogle Scholar
  27. Hooper-Reid, N. M. & Robinson, G. G. C., 1978. Seasonal dynamics of epiphytic algal growth in a marsh pond: productivity, standing crop, and community composition. Can. J. Bot. 56: 2434–2440.CrossRefGoogle Scholar
  28. Hutchinson, G. E., 1975. A Treatise on Limnology. III. Limnological Botany. Wiley, New York. 660 pp.Google Scholar
  29. Iwamura, T., Nagai, H. & Ichimura, S., 1970. Improved methods for determining contents of chlorophyll, protein, ribonucleic acids and deoxyribonucleic acid in planktonic populations. Int. Rev. ges. Hydrobiol. 55: 131–147.CrossRefGoogle Scholar
  30. Jeffrey, S. W., 1961. Paper chromatographic separation of chlorophylls and carotenoids from marine algae. Biochem. J. 80: 336–342.PubMedGoogle Scholar
  31. Jeffrey, S. W., 1968. Quantitative thin-layer chromatography of chlorophylls and carotenoids from marine algae. Biochim. Biophys. Acta 162: 271–285.PubMedCrossRefGoogle Scholar
  32. Jensen, A. & Sakshaug, E., 1973. Studies on the phytoplankton ecology of the Trondheimsfjord. II. Chloroplast pigments in relation to abundance and physiological state of the phytoplankton. J. exp. mar. Biol. Ecol. 11: 137–155.CrossRefGoogle Scholar
  33. Jones, R. C., 1980. Primary production, biomass, nutrient limitation, and taxonomic composition of algal communities epiphytic on the submersed macrophyte Myriophyllum spicatum L. in a hardwater, eutrophic lake. Thesis, University of Wisconsin-Madison. 200 pp.Google Scholar
  34. Jørgensen, E. G., 1969. The adaptation of plankton algae. IV. Light adaptation in different algal species. Physiol. Plant. 22: 1307–1315.CrossRefGoogle Scholar
  35. Kajak, Z., Hillbricht-Ilkowska, A. & Pieczynska, E., 1972. The production in several Polish lakes. In: Kajak, Z. & Hillbricht-Ilkowska, A. (Eds.) Productivity Problems of Freshwaters. PWN Warszawa, 918 pp.Google Scholar
  36. Kloet, W. A. de, 1982. The primary production of phytoplankton in Lake Vechten. Hydrobiologia 95: 37–57.CrossRefGoogle Scholar
  37. Madsen, B. L., 1972. Detritus on stones in small streams. Mem. Ist. ital. Idrobiol. 29: 385–403.Google Scholar
  38. Mann, K. H., 1975. Patterns of energy flow. In: Whitton, B. A. (Ed.) River Ecology. Blackwell, Oxford. 725 pp.Google Scholar
  39. Mason, C. F. & Bryant, R. J., 1975. Periphyton production and grazing by chironomids in Alderfen Broad, Norfolk. Freshwat. Biol. 5: 271–277.CrossRefGoogle Scholar
  40. McMahon, R. F., Douglas-Hunter, R. & Russell-Hunter, W. D., 1974. Variation in Aufwuchs at six freshwater habitats in terms of carbon: nitrogen ratio. Hydrobiologia 45: 391–404.CrossRefGoogle Scholar
  41. Milner, H. W., 1953. The chemical composition of algae. In: Burlew, J. S. (Ed.) Algal Culture from Laboratory to Pilot Plant. Carnegie Inst., Washington, D. C. 357 pp.Google Scholar
  42. Moss, B., 1968. The chlorophyll a content of some benthic algal communities. Arch. Hydrobiol. 65: 51–62.Google Scholar
  43. Odum, E. P., 1971. Fundamentals of Ecology. Saunders, Philadelphia. 574 pp.Google Scholar
  44. Parsons, T. R., Takahashi, M. & Hargrave, B., 1977. Biological Oceanographic Processes. Pergamon, Oxford. 332 pp.Google Scholar
  45. Perkins, M. A. & Kaplan, L. A., 1978. Epilithic periphyton and detritus studies in a subalpine stream. Hydrobiologia 57: 103–109.CrossRefGoogle Scholar
  46. Phillips, G. L., Eminson, D. & Moss, B., 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 4: 103–126.CrossRefGoogle Scholar
  47. Pieczynska, E., 1975. Ecological interactions between land and the littoral zones of lakes (Masurian Lakeland, Poland). In: Hasler, A. D. (Ed.) Coupling of Land and Water Systems. Springer, Berlin. 309 pp.Google Scholar
  48. Round, F. E., 1973. The Biology of the Algae. Edward Arnold, London. 278 pp.Google Scholar
  49. Russell-Hunter, W. D., 1970. Aquatic Productivity. Macmillan, New York. 306 pp.Google Scholar
  50. Saunders, G. W., Cummins, K. C. & Gak, D. Z. et al., 1980. Organic matter and decomposers. In: LeCren, E. D. & Lowe-McConnell, R. H. (Eds.) The Functioning of Freshwater Ecosystems. Cambridge University Press, Cambridge. 588 pp.Google Scholar
  51. Siver, P. A., 1977. Comparison of attached diatom communities on natural and artificial substrates. J. Phycol. 13: 402–406.Google Scholar
  52. Sládečková, A., 1962. Limnological investigation methods for the periphyton (‘Aufwuchs’) community. Bot. Rev. 28: 286–350.CrossRefGoogle Scholar
  53. Sládeček, V. & Sladeckova, A., 1964. Determination of periphyton production by means of the glass slide method. Hydrobiologia 23: 125–128.CrossRefGoogle Scholar
  54. Spodniewska, I., Pieczynska, E. & Kowalczewski, A., 1975. Ecosystem of the Mikolajskie Lake, primary production. Pol. Arch. Hydrobiol. 22: 17–37.Google Scholar
  55. Spoehr, H. A. & Milner, H. W., 1949. The chemical composition of Chlorella: effects of envirionmental conditions. Plant Physiol. 24: 120–149.PubMedCrossRefGoogle Scholar
  56. Steemann Nielsen, E., 1975. Marine Photosynthesis, with Special Emphasis on the Ecological Aspects. Elsevier, Amsterdam. 141 pp.Google Scholar
  57. Steenbergen, C. L. M. & Verdouw, H., 1982. Lake Vechten: aspects of its morphometry, climate, hydrology and physicochemical characteristics. Hydrobiologia 95: 11–23.CrossRefGoogle Scholar
  58. Stockner, J. G. & Armstrong, F. A. J., 1971. Periphyton of the experimental lakes area, Northwestern Ontario. J. Fish. Res. Bd Can. 28: 215–229.CrossRefGoogle Scholar
  59. Strathmann, R. R., 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12: 411–418.CrossRefGoogle Scholar
  60. Tippett, R., 1970. Artificial surfaces as a method of studying populations of benthic microalgae in freshwater. Br. phycol. J. 5: 187–199.CrossRefGoogle Scholar
  61. Verdouw, H. & Dekkers, E. M. J., 1982. Nitrogen cycle of Lake Vechten (The Netherlands); role of sedimentation. Arch. Hydrobiol. 94: 251–263.Google Scholar
  62. Weber, C., 1973. Research development in the measurement of the response of plankton and periphyton to changes in their environment. In: Glass, G. E. (Ed.) Bioassay Technique and Environmental Chemistry. Ann Arbor Science Publ. 499 pp.Google Scholar
  63. Westlake, D. F., Adams, M. S. & Bindloss, M. E. et al., 1980. Primary production. In: Le Cren, E. D. & Lowe-McConnell, R. H. (Eds.) The Functioning of Freshwater Ecosystems. Cambridge University Press, Cambridge. 588 pp.Google Scholar
  64. Wetzel, R. G., 1975. Limnology. Saunders, Philadelphia. 743 pp.Google Scholar
  65. Wetzel, R. G. & Allen, H. L., 1972. Functions and interactions of dissolved organic matter and the littoral zone in lake metabolism and eutrophication. In: Kajak, Z. & Hillbricht-Ilkowska, A. (Eds.) Productivity Problems of Freshwaters. PWN, Warszawa. 918 pp.Google Scholar
  66. Wetzel, R. G., Rich, P. H., Miller, M. C. & Allen, H. L., 1972. Metabolism of dissolved and particulate detrital carbon in a temperate hard-water lake. Mem. Ist. ital. Idrobiol. 29: 185–243.Google Scholar

Copyright information

© Dr W. Junk Publishers, The Hague 1982

Authors and Affiliations

  • Herman J. Gons
    • 1
  1. 1.‘Vijverhof’ LaboratoryLimnological InstituteNieuwersluisThe Netherlands

Personalised recommendations